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Abstract 
 

Computer-based instruments for a remotely-operated laboratory 
 
In traditional university laboratories students conduct experiments under the supervision of an instructor. A 
remotely-operated laboratory for undergraduate education in electrical engineering which emulates a traditional 
laboratory has been set up by Blekinge Institute of Technology (BTH). The laboratory is a client/server 
application and the internet is used as the communication infrastructure. Students around the world can assemble 
circuits simultaneously from electronic components in much the same way as they do in a traditional laboratory. 
The teacher mounts the components  to be used in the lab sessions in a circuit assembly robot. Students thus 
control the robot by means of the wiring on the virtual breadboard displayed on the client PC. The difference 
about this approach and simulating experiments is that we can study the limitations of the physical laws and 
other mathematical models. Physical experiments also enable learners to experience common differences 
between the physical world and simulations based on relevant mathematical models. 
  
Our role is to design and implement virtual instruments with extended features in the experiment server of this 
remotely-operated laboratory. We will use the LabVIEW programming language for this. This language differs a 
lot from classic text-based programming languages like C, C++, java,...  
 
The main goal of this paper is to build an oscilloscope to do measurements on the mounted components at the 
virtual breadboard. The oscilloscope is the main and most advanced instrument. We will do this in two steps. 
First we will make a simple oscilloscope. The purpose of starting to implement a basic oscilloscope is twofold. 
The first advantage is that we learn using LabVIEW and the computer-based instruments concept. The second 
advantage is that we become familiar with a basic scope.  
 
When this simple oscilloscope is finished, we will see what we can do to build a more advanced oscilloscope. 
Eventually we will use the high speed digitizer NI-5112 to emulate an Agilent 54622A oscilloscope.  
 
One of our main purposes is to make structured code so other people can easily work on the project later on. 
With this purpose in mind we first start working on a theory of operations. The advantage of this approach is that 
we really get to know the underlying techniques of a general oscilloscope. In the coding process we can always 
fall back to this theory when we are stuck with some theoretical or practical problems. 
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TWO COMPUTER-BASED OSCILLOSCOPES 

1 Introduction 
Although oscilloscopes aren’t  really meant to make precise measurements, they are the most 
used instruments in electronics and they are also used a lot in other specializations. The 
oscilloscope is popular, not only because of the visual aspect but also because of the quality to 
provide better knowledge of an unknown signal based on different variables. It is possible to 
define the rise time, the amplitude, the fall time, the pulse width, and the period out of a pulse 
signal projected on the screen. But at the same time, also the deviations which would be 
unnoticed with other measuring instruments, are made visible. The signal can for instance 
have high-frequent oscillations or noise. By using an oscilloscope it's also very easy to 
compare two different signals. 
The oscilloscope projects analogue signals on the screen and can analyze them on time base 
or on frequency base (spectrum analyze). 
 
In this work there will be a focus on the digital scope, and more precisely, a computer-based 
oscilloscope. It's only since a few years that the digital scope has become widely available. 
Until recently the technology didn't exist to build analogue/digital-converters (ADC) that 
were fast and accurate enough to make digitizing scopes as practical as general purpose 
instruments. Digitizing scopes must also have memories that can store input data as fast as it 
is sampled. Again, such memories have not been available until recently. The difference 
between a normal digital oscilloscope and a virtual or computer-based oscilloscope is that in 
the latter one, the data is processed by software that is located on different hardware then the 
hardware used to read the data in. This way the virtual oscilloscope can also be used in remote 
programs, and the DAQ-board can be shared by multiple users. 
 
This project will be divided into two different parts. The first part will describe a basic 
computer based oscilloscope using a simple DAQ board. The second part describes a more 
advanced oscilloscope, with a high-end digitizer. This one can also handle triggering and has 
measurement options, next to it’s DAQ function. Another difference, other then the way of 
acquiring data, is the way the information is passed on. The first oscilloscope will not be used 
for remote measurements and thus the only data that has to be transferred is the data read in 
by the DAQ. The more advanced oscilloscope however is used for remote purposes. In this 
oscilloscope all the data will be converted into strings. This oscilloscope will be part of a 
remotely-operated laboratory for undergraduate education in electrical engineering which 
emulates a traditional laboratory. It has been set up by Blekinge Institute of Technology 
(BTH). The laboratory is a client/server application and the internet is used as the 
communication infrastructure. Students around the world can assemble circuits 
simultaneously from electronic components much in the same way as they do in a traditional 
laboratory. The teacher mounts the components  to be used in the lab sessions in a circuit 
assembly robot. Students thus control the robot by means of the wiring on the virtual 
breadboard displayed on the client PC. The difference about this approach and simulating 
experiments is that it is possible to study the limitations of the physical laws and other 
mathematical models. Physical experiments also enable learners to experience common 
differences between the physical world and simulations based on relevant mathematical 
models. 
  
 



2 Basic oscilloscope using a standard data acquisition 
board  

2.1 Introduction 

2.1.1 The basic oscilloscope 
In this case the oscilloscopes software is a LabVIEW program which processes the data 
acquired by the data acquisition board USB-6009. A LabVIEW introduction can be found in 
Appendix A. The user interface is a virtual front panel (see Figure 1) built in LabVIEW. A 
basic oscilloscope doesn’t have many possibilities other then presenting the acquired signal 
correctly formatted on the screen. 
 

 
Figure 1: virtual front panel 
 
A schematic view of the program can be seen in Figure 2. The setting on the front panel will 
be passed on to the “DAQ”, the “extract traces” and the “output” modules. The DAQ module 
uses the hardware to read the signal input in. The extract traces module calculates the trigger 
point, and adjusts the data so in a way the signal is ready to be shown in the output module. In 
the output module the signal is formatted correctly to the screen according to the front panel 
settings. 
 
 



 
Figure 2: Schematic Overview 
 

2.1.2 The standard daq board 
In this basic scope, the USB-6009 will be used as data acquisition hardware. It's a usb-device 
produced by National Instruments (NI). The maximum sampling rate using two channels is 
48000 samples/sec in total, so for 1 channel it is 24000 samples/sec. Testing confirmed these 
values. 
 
The NI USB-6009 provides connection to eight analog input (AI) channels, two analog output 
(AO) channels, 12 digital input/output (DIO) channels, and a 32-bit counter when using a full 
speed USB-interface. 
 

 
Figure 3: the analogue input circuitry 
 
In Figure 3 the analogue input circuitry can be seen. The circuitry consists out of four 
sections: MUX, PGA, ADC and AI FIFO. Because the USB-6009 has only one analogue-to-
digital converter (ADC), a multiplexer (MUX) is needed. The MUX routes one AI channel at 
a time to the programmable-gain amplifier (PGA). The PGA provides input gains of 
1,2,4,5,8,10, 16 or 20 when configured for differential measurements or a gain of 1 when 
configured for single-ended measurements. The PGA gain is automatically calculated based 
on the voltage range selected in the measurement application. The analogue-to-digital 
converter (ADC) digitizes the AI (analogue input) signal by converting the analogue voltage 
into a digital code. The USB-6009 can perform both single and multiple A/D conversions on a 
fixed or infinite number of samples. A quite small first-in-first-out (FIFO) buffer holds data 
during AI acquisitions to ensure that no data is lost. 
The USB-6009 can perform differential voltage signal measurements or single-ended 
measurements. Differential measurements are the difference in voltage between two AI 



inputs. A single ended measurement is the voltage between one analogue input and the 
ground. The limitation on one AI channel is the [-10V -> +10V] range with respect for 
ground. For example, if AI 1 is +10V and AI 5 is -10V, then the measurement returned from 
the device is +20V in differential measurement mode. Although when a single ended 
measurement is performed, there can only be measured in the [-10V -> +10V] range. 
 
More information can be found on the national instruments website:  http://www.ni.com/ 
 

2.2 A preview of the program 

 
Figure 4: the OscUSB.vi 
 
In Figure 4, a screenshot of a block diagram of the whole program is shown to get a general 
view of it. For now it’s only important to notice a few things:  
 
There are 6 inputs shown on the left: “YScale.Maximum” of the Waveform Graph, a constant 
of 24000 for the scan rate (see later), “Trigger”, “Timebase”, “Vertical A” and “Vertical B”. 
Except for the first two, these are LabVIEW clusters which can be manipulated from the 
virtual front panel. A cluster is a group of signals (for example a Boolean and an integer). The 
“YScale.Maximum” is fixed on 4 because of the 2 times 4 divisions wanted on the Y-axis. 
The program provides 2 outputs: The “Timeout” and the “Waveform Graph” which are also 
visible on he virtual front panel (Figure 1).  
 
 



The program has been split up in 3 different sections: 
• The signal acquisition 
• The trace extraction 
• The display of the traces 

These sections are explained in the following paragraphs. 

2.3 Signal acquisition 
This section is mainly to define the vertical and the horizontal settings which is done in 
consideration with the “Vertical A/B” inputs and the “Timebase” input. Before explaining 
how this is implemented in labVIEW, some theoretical background is needed: 

2.3.1 Theoretical background 

2.3.1.1 The vertical section 
The vertical section is the part of the oscilloscope which handles the displayed amplitude of 
the input signal. It has three major functions, the first one being a filter with three modes: AC, 
DC, GND. In this section, the part of the input which must be seen on the screen must be 
defined. The second function is the position function, which enables to put an extra offset on 
the signal. The third function in the vertical section is the voltage/division control. That 
function controls the scale of the output. There is also an “on/off” setting to enable/disable a 
channel. 
 
In the filter part, DC-mode stands for “direct connect”. In this mode, the input signal does not 
pass any filter before it reaches the next part of the circuit, and will be completely visible on 
the output. In AC-mode you only see the “alternate current” part, you filter the “direct 
current” part (offset) out of the signal. The third mode, the GND-mode makes the reference 
level visible on the screen. Instead of having the input attached to the rest of the circuit, the 
ground or base voltage level is attached. The result is a flat line on the screen at the position 
level. 
 
Figure 5 and Figure 6 might give a better view of this function. Figure 5 shows the input 
signal, Figure 6 shows the output result for the different modes: DC, AC, GND. In DC-mode 
giving the upper sinusoid, in AC-mode the lower one and in GND mode the output aligned to 
the horizontal axis. 



 
Figure 5: the input signal 
 
 

 
Figure 6: the output signal in DC, AC and GND mode 
 
With the voltage/division knob the scale in which the input signal is presented on the 
oscilloscope screen can be altered. The more volts/division, the smaller the signal will appear 
in the output. Figure 7 shows a sinusoid with a 3V amplitude (6Volt peak to peak), once with 
the voltage/division knob set on 3V per division and once on 1V per division. 
The oscilloscope’s voltage/division knobs will have the following discrete values: 5, 2, 1, 0.5, 
0.2, and 0.1 V/div. 
 



 
Figure 7: examples of different voltage/division modes 
 
The last setting of the vertical section is the position knob. This knob controls the signals 
offset in screen divisions. Both a negative and a positive offset are possible. It's used to 
compare the DC levels of different signals, to put both channels of the oscilloscope on the 
same GND-level and various other things. This is made clear in Figure 8. 
 

 
Figure 8: examples of different vertical position modes 
 
Combining the three parts of the vertical section, the following mathematical expressions can 
be found: 
For DC mode:  o(t) =  (i(t) + P)/v 
For AC mode:  o(t) =  (iac(t) + P)/v 
For GND mode:  o(t) =  P/v = constant 
 
in which: 
i(t) = iac(t) + Idc = input signal  [Volt] 



iac(t) = alternate current part of input signal [Volt] 
Idc = direct current part of input signal [Volt] 
v = voltage/division [Volt/divisions] 
o(t) = output from vertical section [divisions] 
P = position, offset [Volt] 
 

2.3.1.2 The horizontal section (Timebase) 
In the horizontal section, the following things are defined: the amount of seconds shown in 
one division and the reference position: 
 
Seconds/division: 
= base setting or sweep speed 
This is a scale factor. Horizontally, the screen has 10 divisions. So when the setting is 1 ms, 
one horizontal division represents 1ms and the total screen width represents 10 x 1 ms = 10 
ms (= the product of the amount of divisions (10) and the sweep speed (1ms))  
Longer and shorter time intervals of the input signal can be seen on the screen by changing 
the seconds/division. 
 
The display is a matrix of pixels. The hardware produces a fixed number of samples per 
sweep, for example 1000 samples (= buffer size). These samples should then be equally 
divided horizontally on the display. The horizontal scale is set by the sample rate. 
 
An example: 
The sample rate is 1000 samples/s and each sweep is 1000 samples. 
This means there is 1 sweep per second and because there are 10 divisions per sweep, the 
horizontal scale is 0.1 s/div. 
To become a fluent line on the screen a good sample rate is needed. The sample rate of 10000 
samples/s is set as maximum which is equal to 10 ms/div: 
10000 samples = 10 sweeps = 100 div; 
1s = 1000 ms; 
=> 1000ms/100div = 10ms/div 
The following settings are enough: 10, 20, 50 and 100 ms/div. 
 
Sample points are digital values which can be obtained out of an analog-to-digital converter 
(ADC). This ADC is a part of the data acquisition hardware device. The intervals between the 
samples refers to the time between the sample points and will define the sample rate. An other 
way to set the correct timebase is altering the amount of samples by using a fixed sample rate. 
 
Reference position: 
By setting the reference position you can choose the horizontal position of the trigger point. 
There are three discrete values: 10%, 50% and 90% of the screen. The default value is 50%.  
 
 
 
 
 



2.3.2 In LabVIEW 
As shown in Figure 4, this section contains the unbundling of the Vertical inputs, the Vertical 
Range.vi, the Horizontal Range.vi, the Signal Input.vi and the ACDCGNDSelector.vi.  
Two “Unbundle” elements split up the “Vertical A” and the “vertical B” inputs into the 4 
settings for each channel: a Volt/division, a position, a boolean value that determines whether 
the channel is enabled or not and a slide value which determines the coupling mode (AC, DC 
or GND). 
A description of the four subVI’s is given: 

2.3.2.1 The Vertical Range.vi 
This vi gets the following inputs: The Scale (Volts/div),  the Position (div) and the coupling 
mode of both channels and the Graph y-scale max (Div). The vi takes care of the gain 
calculation and the maximum/minimum value calculation (Figure 9): 

 
Figure 9: The Vertical Range.vi 
 
Gain calculation 
The gain for each channel can be calculated by inverting the selected voltage/division value.  
 
Maximum/minimum Value Calculation 
To find the maximum value, the absolute value of the position needs to be added with the 
Graph y-scale max. This result is an amount of divisions and must be multiplied with the scale 
to become a maximum in voltage. These calculations are made for both channels with an 
Absolute Value, an Add and a Multiply element. 
 
The maximum in voltage of both channels now needs to be compared with each other. The 
highest value becomes the new maximum of the two channels. In LabVIEW this is done with 
a Greater and a Select element. Because the usb-6009 has a limited range, the device its 
maximum is +10V. This means that when the calculated value exceeds 10V, the maximum is 
set on 10V. This is done with another Select element.  
Another exception is made when the coupling of a channel is set to AC. In that case the 
maximum range of the usb-6009 is used as well. This is done because there is no information 



on what the maximum value visible on screen could be. This way a signal with a large offset 
could appear as a clipped signal on screen when the min/max values are too small. 
 
For the minimum, the negative value of the maximum is used and can be found with a Negate 
element. 

2.3.2.2 The Horizontal Range.vi 

 
Figure 10: Horiz. Range.vi 
In this vi, the Pretigger scans and the Sweep length (scans) are calculated out of the Time base 
and the Max. scan rate (Sec/div): Figure 10. 
 
To calculate the “Sweep length (scans)”, the following formula is used: 

sweepvnumberOfDisscanseMaxScanRattimebasedivscansLengthsweep /*)/(*)(sec/)( =  
The Max scan rate is set on 24000 scans/sec determined by the USB-6009 and the Number of 
div/sweep is set on 20 because a buffer of 2 screens (= 20 divisions) is needed to have enough 
samples after the trigger. So the Sweep Length can now be calculated by multiplying these 3 
values with two Multiply elements. 
 
To calculate the “Pretrigger scans” (=amount of scans before the trigger), the following 
formula is used: 
Pretrigger Scans = reference position (in percent of the screen) * sweeplength/2 
The Sweep length needs to be divided by 2 be because the amount of Pretrigger scans is for 1 
screen. This can be calculated with one Multiply and one Divide element. 
 



2.3.2.3 The Signal Input.vi 

 
Figure 11: Signal Input vi 
 
In Figure 11 there is a picture of the Signal Input.vi in LabVIEW. It needs the following 
inputs: the sweep length, the Max. scan rate (scans/s), the maximum and the minimum value 
(calculated in the Vertical Range.vi) and the Hardware id. The hardware id is on most 
computers the default id (=Dev1/ai0,Dev1/) for the USB-6009. Generally this is the 
appropriate setting and it only needs to be changed in rare cases. 
 
The 7 numbered blocks in Figure 11 acquire the data out of the USB-6009 
A short overview of those blocks: 

1. An empty task is created. 
2. An analog input voltage channel is created. The hardware id is selected, and the gain 

in the programmable gain amplifier is set trough the maximum and minimum value. 
Also the measuring mode is set (differential). 

3. Here the scan rate is set on the highest possible scan rate. The sample mode is defined 
to be continuous.  

4. The start VI: The data acquisition starts here. 
5. The “number of samples per channel” is set as the sweep length (amount of scans) and 

the data output returns the Scanned voltage data record. 
6. Stop the analog input task. 
7. Call the clear Task VI to clear the Task. 

 
The output of this VI now gives the Pretrigger scans, the Sweep length (in amount of scans), 
one array with two rows of Sampled Voltage Data and eventually error messages when an 
error occurred. 

2.3.2.4 The ACDCGNDSelector.vi 
This vi needs the following inputs: the AC/DC/gnd setting of channel A and B, the sweep 
length (Scans) and the Horizontally adjusted voltage data (see Figure 12). 



 
Figure 12: The ACDCGNDSelector.vi 
 
First of all, the 2-dimensional array is split into two 1-dimentional arrays to do the appropriate 
calculations according to the vertical settings for each channel. Each of the resulting arrays 
contains the data of one channel. This splitting is done with the following function: Index 
Array. This element needs a n-dimension array (the horizontally adjusted voltage data) and 
one or more indexes as input and it returns the element or sub-array at the given index (0 and 
1). 
After this, there is taken care of the AC/DC/gnd calculation with an AC-DC-GND.vi for each 
channel. This vi calculates the “Horizontally adjusted voltage data” and a “GND Mode” 
boolean for each channel, according to the AC/DC/gnd setting.  
The following inputs are needed: the Sampled adjusted voltage data of the appropriate 
channel, the AC/DC/gnd setting of that channel and the Sweep Length (Scans) 
There has to be a distinction between the 3 cases: In LabVIEW this is done with a case 
structure. In such a case structure, the value wired to the selector terminal (at the selection 
mark sign) determines which case to execute: 
 
- In case of AC (Figure 13): 
In this case, the sum of data values out of the array is made and this has to be divided by the 
size of the array to get the average. For each of these 3 calculations, there exists a function in 
LabVIEW: Add Array Elements, Array size and Divide. 
The distraction of the original values with this average will give the Horizontally adjusted 
voltage data as output. This is done with a distract element which distracts the calculated 
value of all elements of the array. 
Also, the GND mode boolean is set on false. This boolean will be used later on in the 
program. 



 
Figure 13: case AC 
 
- In case of DC (Figure 14): 
In this case, the original data has to be shown on the screen, so the Sampled voltage data is 
directly connected to the Horizontally adjusted voltage data output. The GND mode boolean 
is again set on false 

 
Figure 14: case DC 
 
 
- In case of gnd (Figure 15): 
In case of gnd mode, all the data values in the array must become zero. The Initialize Array 
function makes a brand new array full of zeros. This function needs an element and a size as 
input and creates an n-dimensional array in which every element is initialized to the value of 
that element. The size of the new array is determined by the Sweep Length calculated in the 
Horizontal Range vi. Of course the GND boolean is now set on true. 

 
Figure 15: case GND 



2.4 Trace extraction 
This section mainly consists out of calculations and checks that have something to do with the 
triggering. A theoretical background of the Trigger section is given before explaining the 
implementation in LabVIEW: 

2.4.1 Theoretical Background 
The trigger section is used to control the starting point of the sweep on the display. Always 
triggering on the same point is necessary to become an apparent fixed image of the input 
signal. 
 
The trigger level control makes it possible to select the voltage at which the waveform starts, 
the slope control selects whether the waveform starts at a positive or at a negative slope. 
When the input waveform gives a slope and level match at the reference position, as set on the 
trigger and horizontal control panel, a pulse is sent to the horizontal circuit section to start the 
sweep. Periodic input signals will start the sweeps at the same point, which will give a 
stationary signal on the output screen. 
 
There are three different trigger modes: Normal triggering, auto triggering and auto-level 
triggering. 
 
Normal triggering is the most basic of all triggering methods. First the trigger level must be 
selected. If the trigger conditions are not reached, there wont be a sweep. 
Figure 16 and Figure 17 can clarify this. In Figure 16 the input signal and two trigger levels 
are shown. One of the trigger levels is clearly not crossed by the input signal and the other one 
crosses it periodically. The results of the trigger level can be seen in Figure 17. For better 
viewing; both trigger signals are on a different base level. The bad trigger level doesn't cross 
the signal and will result in a non changing trigger signal. It provides no trigger pulses and 
thus no sweep. The good trigger level does cross the input signal. In Figure 16 there is 
triggered on the negative slope: a trigger pulse will be generated on the trigger signal, every 
time the input signal is on a negative slope and crosses the trigger level.  

 
Figure 16: examples of trigger levels in normal triggering 
 



 
Figure 17: normal triggering results 
 
Auto-level triggering is very similar to normal triggering. In this trigger method, the 
oscilloscope will first fire a random sweep, measuring the maximum and minimum level of 
the input signal. The trigger level will then be put in the middle between those boundaries, 
resulting in a guaranteed trigger if the signal is recurrent. 
The difference between auto-level and normal triggering thus lies in the fact that the auto-
level trigger takes control over the trigger level selection. 
 
When using auto triggering, the trigger circuits in the scope waits for the input signal to reach 
the trigger conditions. If the input signal does not reach the trigger point within a pre-
specified time interval (timeout), the scope will automatically generate the trigger pulse 
causing a sweep to start. 
 
 
 
 
 
 

2.4.2 In LabVIEW (Extract Traces.vi) 
As shown in Figure 4 , this sections only contains the “Extract Traces.vi” (Figure 18). 

 
Figure 18: Extract Traces.vi 
 
This VI starts with separating the Sampled voltage data of channel A and B from each other 
with an “Index Array” element. The source boolean which comes out of the Trigger cluster 
must select which channel must be used for triggering. The boolean is true when channel A is 
the trigger channel and false when channel B is the trigger channel. The selection of the 
correct trigger channel is made with a “Select” element. 
 



The actual sweep length  in traces is the half of the sweep length in scans that is given as 
input. The difference is that the actual sweep length is for one screen while the sweep length 
in scans is for 2 screens. 
 
The trigger subVI calculates the trigger position and returns a boolean that determines 
whether a trigger is found or not. This vi contains one big case structure, controlled by the 
way of triggering: normal (case 0), auto (case 1) or autolevel (case 2) triggering. In every case 
there is a Find Trigger.vi (Figure 19) used in a while loop to find a usable trigger. This vi 
works as follows:  
 

 
Figure 19: Find Trigger.vi 
 
A way to search the trigger point is by checking if the trigger level is passed between two 
successive values: the “Iterations of the while loop” input and a decrement of this input 
selects 2 such successive values out the “Sampled voltage data” by using an “index array” 
element. Those two values (sample A and B in Figure 20) are compared with the trigger level 
and if one of them is higher and the other one is lower than the trigger level, the trigger level 
is passed. This is implemented with 2 comparing elements (an “Greater Or Equal” and an 
“Equal” element) of which the outputs are connected to an “Exclusive Or” element. 
If, for example, both results from the comparison are “TRUE”, then both signals are below 
the trigger level, and the XOR port will return a “FALSE”. 
 

 
Figure 20: Checking for trigger 
 
Next thing to do is check for the correct slope. All that has to be done for this is comparing 
the current value with a value of two places before. This last value is also returned by the 



“Index Array” by giving as index input  the “Iteration of the while loop” minus two (= 2 times 
a decrement). There is a correct slope when this comparison is in order to the slope boolean: 
so there is a combination of a “Less?” element and a “Equal?” element needed. 
When the trigger level has been passed and the slope is correct, a trigger has been found. The 
next step is checking if the trigger is in range. To do this the amount of pretrigger scans are 
subtracted from the previously found trigger location: this gives the start location from the 
scans that will be used to fill up the screen. After that, two comparison elements are used to 
check whether there are enough samples available to fill up the whole screen. 
  
If the result of these 4 checks are true (the and port of the 4 result becomes true) a usable 
trigger has been found. The position of this trigger is passed on, together with a “TRUE” 
Boolean to indicate that a correct trigger has been found. 
  
After understanding this subVI, the 3 cases can be explained: 
Normal triggering (case 0) 
In this case (see Figure 21), a while loop is used to try to find a successive trigger with the 
Find trigger.vi. This loop will continue until a successive trigger is found or until the amount 
of iterations gets bigger then the amount of scans (sweep length) which means there is a 
timeout. This is implemented with a “Greater or Equal?” element between the Sweep length 
and the amount of iteration which leads to a “Time out” output. This output in combination 
with the “Trigger Found” output of the Find Trigger.vi are connected to an OR-port which 
returns the boolean of the while loop condition. When the condition to stop the loop is 
reached, the “Trigger Found” and the “Trigger Position” outputs must be changed to the 
outputs of the Find Trigger.vi and otherwise they stay the same as in the previous iteration. 
This is implemented with 2 “Select” elements. The “Trigger Level” can directly be connected 
to its input because when there is no trigger found, this level doesn’t matter. 
 
 

 
Figure 21: Normal triggering 
 
Auto triggering (case 1) 
The only difference with this trigger mode is that it triggers after a certain amount of 
iterations instead of stopping the search for a trigger when the number of iterations gets bigger 
then the sweep length (see Figure 22). When no trigger is found after 52% of the sweep length 
the while loop must stop and there must be a triggering on the last used trigger position: this 
means that the “Trigger Position” changes to the output of the Find Trigger.vi which is done 
with a “Select” element.  52% of the sweep length is used as limit because then there are still 
enough scans left in the buffer. This in consideration with a minimum Reference position of 



10%. Before this auto triggering takes place, normal trigger conditions will be searched using 
the same method as in normal triggering. 
After the while loop has ended the level from the trigger position is fetched from the 
“Sampled voltage data” with an “index array” element. In case of a timeout this new trigger 
level will be used as trigger level, in case of a normal trigger the preset trigger level will be 
used. This selection is made with a “Select” element. Because there will always be a 
triggering in this mode, the “Trigger Found” output can be set on true. 
 

 
Figure 22: auto trigger 
 
Autolevel triggering (case 2) 
Autolevel triggering starts by calculating a new trigger level (see Figure 23). The “array max 
& min” function gives the maximal and minimal value of the data array from the selected 
channel. The sum of those two values divided by two gives the new trigger level. The actual 
triggering goes in the same way as the normal triggering. The only difference is that there will 
definitely be a trigger in this mode, so no “time out” precautions are necessary. 
 
 

 
Figure 23: Autolevel Triggering 
 
 
If a trigger has been found (the “Trigger Found” boolean out of the Trigger.vi is true), the new 
data-arrays can be created with a subset array starting from the trigger position (Figure 24). 
The size of these new arrays is determined by the Sweep length (traces for one screen). Then 
both arrays are bundled and sent to the “map to graph” subVI. 



 
Figure 24: New Data-Array (trigger) 
 
If there is no trigger found, all data in the new arrays will be set to “zero” (Figure 25). This 
array will also be used in case of ground mode coupling to present the ground-line on screen.  

 
Figure 25: New Data-Array (no trigger) 
Those two cases are implemented with a case structure. 
 
At the and of the Extract Traces.vi, the “Cursor Trigger Level” output is determined: it is a 
cluster of the trigger level with the boolean that determines the source of the trigger (in case 
of true, channel A is the source of the trigger and in the other case channel B). This cluster is 
needed in the Map to Graph.vi. 



2.5 Display of the traces 
As last part there is the “Display of the traces” section that needs to take care of the output. 
First of all this means that the vertical adjustments have to take place so the plots appear on 
the screen in the right proportions and on the right position. This is done in the Map To 
Graph.vi which will give the traces to put on the Waveform Graph and the Trigger Level as 
output.  Secondly, a Waveform Graph block is used to configure the Waveform Graph: 

2.5.1 The Map to Graph.vi 
After splitting up the voltage data, both channels arrays are formatted in the appropriate way. 
The following formula is used to do this: “ positiongaininput +∗ ”. Here the input is the array 
of data values. In LabVIEW this formula can be created using a Multiply and an Add element 
(see Figure 26). After this, the data values of both the channels are collected again with a 
‘build array’ component. The “traces” output is ready to be submitted for the waveform 
graph. 
 
The trigger section of this vi starts by selecting the correct gain and position values to adjust 
the trigger level, so it can be positioned correctly on the screen. This is done with a case 
structure: if the boolean of the cursor trigger is true, the values of channel A must be taken 
and in case of false the values of channel B. After this, the trigger level also is vertically 
adjusted, using the same formula as before. This adjusted trigger level will be displayed on 
the screen later on. 
 

 
Figure 26: Map to Graph.vi 
 

2.5.2 Configuration of the Waveform Graph 
Completely on the right (Figure 4) there is a column shown, called Waveform Graph property 
node. This block places the different cursors on the graphical output: the trigger level, the 
position of channel A and B, and the reference position. The ActCrsr is used to get and set the 
active cursors and set properties and methods on that cursor. The Cursor.PosX/Y is the X/Y 
coordinate of the cursor: The Y coordinate of the trigger level cursor is determined in the Map 
to Graph.vi, the Y-coordinates for the channel A and B cursors come out of the “Vertical A” 



and “Vertical B” clusters, and the X-coordinate of the reference position is set on the amount 
of pretrigger scans as returned by the Horizontal Range.vi. 
Also the plots are controlled in this property note: ActPlot shows which plot is active. In this 
case there are 2 plots: one plot for each channel. The Plot.visible? makes the plot visible when 
it gets a true boolean as input. A plot must only be visible when the ON/OFF button is in 
position ON and if the trigger is found or the channel is in GND mode. This is determined 
with an OR in combination with an AND element. 
 
Every cursor and every plot also gets a number assigned that is used as index for that 
cursor/plot. 
 
The Xscale.Maximum is the maximum value of Scale which is determined by the Sweep 
Length and the XScale.Increment is the increment value of the scale which is 1/10th of the 
Maximum value of Scale to become 10 divisions. 
 
The “Hide Grid” boolean determines whether the grid has to be visible or not: in case of true 
the X- and Ycolor are set in a color (26112 and 13056 stands for 2 kinds of green), in the 
other case they are set black (0 stands for black) which is implemented with a “Select” 
element. A cluster of two colors is needed as input to set the X/Y color: The first one is for the 
major color and the second one for the minor color.  

2.6 Performance 
The performance of the application is mainly dependant on the USB-6009. This device has a 
rather small maximum scan rate. The performance of the application is thus satisfactory. On 
relatively slow computer hardware (Pentium II 400 MHz, 256 MB SDRAM, 100MHz FSB) 
the oscilloscope reacts prompt. Only when changing the input signals very quickly the 
oscilloscope needs a little bit more time to recalculate the signal. This is due to the slow USB 
protocol and because of the needed calculations. The response time is generally quite short 
and is most of the times negligible. 
 
There is only one performance problem: an error -200361 dialog (Figure 27) sometimes pops 
up in the following cases: 

• when there are a lot of programs in the computer's memory 
• by using a lot of debug features  
• or very rare, while only working with the oscilloscope 

 
Figure 27: Error -200361 
 



National Instruments website states the following about the problem: 
Solution: The behavior you are experiencing is a result of a combination of factors.  

1. The 6008/9 has a relatively small onboard FIFO.  
2. NI-DAQmx Base is a driver written at the user level.  
3. Communication with the device is message based over USB which is inherently slower 

than equivalent communication over PCI.  
Since NI-DAQmx Base is written in LabVIEW, it has user level priority and CPU allocation. 
If the operating system is busy with other user level operations, NI-DAQmx Base can get 
starved of resources so that it cannot request data from the USB device fast enough. Since the 
USB-6008/9 has a relatively small onboard FIFO, it does not take long for the FIFO to 
overflow if you are acquiring at a high rate. Unfortunately, the operations such as opening 
other programs, minimizing/maximizing windows are very CPU intensive, especially with 
Windows OS. Therefore, when you perform these operations, NI-DAQmx Base cannot retrieve 
data from the device, the FIFO overflows, and you get the -200361 error.  
 
Investigation about the USB protocol problem is easy: The program is tested over USB1.1 (up 
to 12mbyte/s) and USB2.0 (up to 480 mbyte/s). There was no difference in performance. The 
conclusion is thus that the error always comes from a combination of the relatively small 
onboard FIFO and the driver being written at user level. Testing on several computers 
confirmed this. In the end it seems that this error is impossible to solve in the program code; 
it's one of the limitations of the USB6009 device. One possible solution is to filter out the 
error message because it's actually only a warning and the program continues working after 
pushing the ok button. 
 



3 A more advanced oscilloscope using a high speed 
digitizer 

3.1 Introduction 
This section describes a more advanced scope which uses a high speed digitizer, the NI5112, 
to acquire the data, instead of getting data from a simple DAQ-board. A high speed digitizer 
is a piece of equipment that reads in a signal and transforms it into digital data. Other 
functions that distinguish the digitizer from a normal DAQ board, are that it can trigger and 
perform a variety of measurements on the acquired signal. 

3.1.1 Advanced Oscilloscope 
The advanced oscilloscope distinguishes itself from the basic oscilloscope in this way that it 
has a bigger variety of functions. Not only is it capable of everything the basic scope can do, 
it also can perform measurements on the signal directly in the NI5112.  
Another difference is that you have the choice for the trigger: it can be done in the hardware 
of the NI5112 or it can be done by software, the same way as in the basic oscilloscope. 

3.1.2 Remote Lab 
A remote lab or distant lab is a laboratory that emulates a traditional laboratory. The hardware 
and electrical components are wired in a circuit by the use of a robot. This happens on the 
server side. The robot is controlled by a client somewhere else. The internet is used as the 
communication infrastructure between the client and the server applications.  
 
A remote lab has some special requirements: 
All settings and data have to be sent from the client to the server flawlessly. In order to 
achieve this goal, the data has to be sent in a predefined way. Therefore strings are used for 
the communication protocol. 
The client sends one string which contains all settings to configure the oscilloscope in the 
appropriate way. The server responds with a string containing all actually used settings, the 
received measurements and signal data. The protocol describing these string can be found in 
Appendix C/D. 
 
Because these special needs of the remote lab, the advanced oscilloscope is split up in two 
main vi's: The OscSetup and the OscRead.vi. The OscSetup.vi handles the first string, created 
by the remote front-panel. In this way the settings from the client are passed to the 
oscilloscope. The second string returns the actual measurements (based on the settings out of 
the first string) back to the client: this is done in the OscRead.vi. This vi is executed by a 
second string coming from the client. This string is no more than a “send data” request. A 
better description is provided later on in the ‘Notes for client module implementation’. 
 
The oscilloscope also needs the resource name and an error in as input. Trough the whole 
program the error in will always be passed on to the next subvi and will be updated when an 
error occurs. The final outputs are an error out and a response string. The error out contains all 
the occurred errors if any and the response string will contain the results of the performed 
measurements. 
 



3.1.3 Data acquisition using the NI-5112 
The acquisition 
The NI 5112 acquisition system controls the way samples are acquired and stored. Two 
sampling methods are available: real-time sampling and random interleaved sampling (RIS). 
Real-time sampling allows you to acquire data at a rate of 100MS/n, where n is a number 
from 1 to 100e+6. In RIS mode, you can sample at rates of 100MS/s*n, where n is a number 
from 2 to 25 
 
During the acquisition, samples are stored in a circular buffer that is continually rewritten 
until a trigger is received. After the trigger is received, the NI 5112 continues to acquire 
posttrigger samples when a posttrigger sample count is specified. The acquired samples are 
placed into onboard memory. The number of posttrigger or pretrigger samples is limited only 
by the amount of onboard memory. 
 
The NI 5112 PGA offers a variable input range per channel, from ±0.025 V to ±25 V. The 
ADC is only 8 bits. To get accurate measurements it is very important to set the PGA to the 
preferred range. 
 
The triggering 
The analog trigger on the NI 5112 operates by comparing the current analog input to an 
onboard threshold voltage. This threshold voltage, the trigger value, can be set to any voltage 
within the current input range. A hysteresis value associated with the trigger is used to create 
a trigger window the signal must pass through before the trigger is accepted. (see Figure 28) 
 

 
Figure 28: Trigger with hysteresis 
 
The NI5112 features 
The supported features can be found in the table in Appendix B. 
One thing that has to be noticed is that the NI 5112 only support AC and DC coupling so the 
GND coupling must be implemented in software. 
 

3.2 Digitizer setup (the OscSetup.vi) 
The first two things that happen in this vi is the initialization of the oscilloscope driver in the 
niScope Initialize.vi and splitting up the Oscilloscope Setting Information String (=Data In) 
with the Strip_String.vi to become the settings. The boolean of true that is one of the inputs of 
the niScope Initialize.vi is meant to reset the instrument during the initialization procedure. 



The instrument handle output identifies a particular instrument session so it needs to be 
passed on to every subvi. The Strip_String.vi will give the settings, a boolean and the 
remaining string as output. The boolean determines whether it is Autoscale mode or Normal 
mode and a case structure will send the necessary inputs to the correct vi (so to the 
Autoscale.vi or to the NormalSettings.vi) to do the setup according to the mode. After this, the 
Oscilloscope Driver can be initiated with the niScope initiate Acquisition.vi which will return 
an error out and the instrument handle which must be bundled with the settings and remaining 
string to become the output cluster that is needed for the Data Fetch. This all is shown in 
Figure 29. 
 

 
Figure 29: OscSetup.vi (autoscale) 

3.2.1 Strip_string.vi 
The string that enters this vi contains the settings including a boolean to distinguish the 
Normal mode from the Autoscale mode. The first thing that has to be done is to strip of this 
boolean with a Scan from String element. The different settings can now be determined out of 
the remaining string. These settings includes the horizontal configuration, the channel (2 
times), the trigger and the measurements (3 times) -settings. 
 
The horizontal configuration settings 
This is the first part that has to be scanned out of the remaining string and it contains the 
minimum sample rate (a double), the reference position (a double) and the record length (an 
integer).  The stripping of these 3 values can, again, be done with a Scan From String element. 
By bundling these three values, the horizontal configuration setting is determined. 
 
The channel settings (two times) 
These settings include a boolean that defines whether the channel is enabled or not. If the 
channel is enabled, it also includes the vertical coupling (Enum), the vertical range (double), 
the vertical offset (double) and the probe attenuation (double) settings. So first the boolean 
needs to be scanned out. After this, a case structure will scan out the other 4 values in case of 
a true boolean. In case of a false boolean, the 4 other values are set to a fixed value. These 5 
values are bundled together to become the settings of one channel. 
 
The trigger settings 
These settings include the source (Enum), the slope (Enum), the coupling (Enum), the level 
(double), the holdoff (double), the delay (double), the mode (double) and the timeout (double) 
–settings. The scanning of these values is analogue as in the previous settings. 
 
The measurement settings (three times) 
These include the channel (Enum) and the selection (Enum) settings.  
 
 
 



 
All this results in the following outputs: 
-Autoscale/Normal 
-Remaining String 
-Settings: Horizontal Conf.: Min. Sample rate 
(a cluster of)    Reference position 
     Record Length 
  Channel A:  Enable 
     Vertical coupling 
     Vertical range 
     Vertical offset 
     Probe attenuation 
  Channel B:  Enable 
     Vertical coupling 
     Vertical range 
     Vertical offset 
     Probe attenuation 
  Trigger:  Source 
     Slope 
     Coupling 
     Level 
     Holdoff 
     Delay 
     Mode 
     Timeout 
  Measurements: Measurement 1:  Channel 
        Selection 
     Measurement 2:  Channel 
        Selection 
     Measurement 3:  Channel 
        Selection 
 
The result of all this is shown in Figure 30. 
 



 
Figure 30: The Strip String vi 

3.2.2 In case of Autoscale mode: niScope Auto Setup.vi 
If autoscale is used, the oscilloscope makes all settings according to the signal. This function 
is created by National Instruments: the niScope Auto Setup.vi. This means that in this case the 
settings doesn’t need to be changed and the adjusted instrument handle and the error out are 
given by the niScope Auto Setup.vi: Figure 31. 

 
Figure 31: Autoscale Mode 

3.2.3 In case of Normal mode: NormalSettings.vi 
The NormalSettings.vi will return the adjusted instrument handle out and the adjusted trigger 
level started from the instrument handle in (out of the niScope Initialize.vi) and the Settings 
(out of the Strip_String.vi). A bundle by name element will replace the trigger level in the 
cluster of settings with the adjusted trigger level in auto-level triggering mode (see Figure 32). 
This is only for later developing purposes because the actual used trigger level is returned by 
the driver (see later). 



 
Figure 32: Normal Mode 
 
The NormalSettings.vi contains four parts that are connected behind each other by passing on 
the errors and the instrument handle: Figure 33.  
In the first part the “niScope Configure Acquisition.vi” is used to set the scope in Normal 
acquisition mode. In the second part, the “niScope Configure Horizontal Timing.vi” takes 
care of the configuration of the horizontal settings. This vi needs except for the instrument 
handle and the error input also the minimum sample rate, the Reference position and the 
Record length as input: unbundling the “Horizontal Conf. input” gives these values. 
The last two parts consists out of the “Vertical settings.vi” and the Trigger.vi. 

 
Figure 33: The Normal.vi 
 
In the Vertical settings subVI (see Figure 34), the Channel A and Channel B settings are used 
as input. The “Vertical range” outputs are created for each channel out of the channel A en B 
setting clusters. All the settings of Channel A and Channel B each go to a “niScope Configure 
Vertical.vi”. When a channel is GND coupled, it’s necessary to change this coupling mode 
because it is not supported by the NI 5112. Later on in the program the GND coupling will be 
implemented in software. In this case, a change from GND to DC-coupling is used: this is 
done with a case structure in the checkforground.vi that can be seen in Figure 35. 
Except for these channel settings, the “niScope Configure Vertical.vi” also needs the 
instrument handle, the error in and the channel name as input (0 for channel A and 1 for 
channel B). Coupling those 2 “niScope Configure Vertical.vi’s” behind each other will give 
the adjusted instrument handle and the error out as output. Both channels are always enabled 
so its possible to trigger on a disabled channel and to perform measurements between both 
channels: for example to determine the phase delay. 
 
 
 



 
Figure 34: The vertical Settings.vi 
 

 
Figure 35: The checkforground.vi 
 
The Trigger subVI needs the Trigger settings and the Vertical range of Channel A and B as 
input. First the appropriate trigger source is selected. A distinction is made between triggering 
on channel ½, Immediate triggering and external triggering by using a case structure. 
In case of Immediate triggering 
When an acquisition is initiated, the digitizer waits for the start trigger. In this case the 
digitizer triggers immediately when the acquisition is started. This setting is done in the 
“niScope Configure Trigger Immediate.vi”. This vi only needs the instrument handle and the 
error in as input. With immediate triggering the trigger level is unused so it is set on a 
constant to avoid errors: Figure 36.  
 

 
Figure 36: Immediate triggering 
 
 
In case of External triggering 
In this case the triggering is configured the same way as is the case of immediate triggering 
because external triggering is not necessary in a remotely operated laboratory. Thereby it is 
not implemented in the current version of this program. 
 
 



In case of Channel 1 or Channel 2 as trigger source 
Because all of the niScope vi’s need a string of the channels List as input instead of a double, 
the source of the trigger is first converted with a Number to Decimal element. Depending on 
the trigger mode (Auto/Normal or Autolevel), the trigger level is determined in a case 
structure: 
-In case of Autolevel mode (Figure 37): 

 
Figure 37: Autolevel mode 
 
First of all a niScope Configure Trigger Immediate.vi is used so there will be an immediate 
triggering. Secondly the niScope Initiate Acquisition.vi makes the oscilloscope leave his idle 
state and initiates a waveform acquisition. The Check Status.vi (see Figure 38) executes a 
while loop until the acquisition status is equal to 1 which means the driver is now completely 
ready to do measurements. This happens in a No error case structure because otherwise the 
program gets stuck because the driver never gets ready as the oscilloscope is not configured 
properly. 

 
Figure 38: Check Status.vi 
 
After this, there are two niScope Fetch Measurements.vi’s used to calculate the trigger level: 
The scalar measurement of the first vi is equal to 6 which stand for Voltage Max so this vi 
will give the maximum voltage as output. The second vi will search for the minimum voltage 
(scalar measurement = 7). The trigger level is now the average of the minimum and the 
maximum voltage (the summation divided by 2). At last the niScope Abort.vi aborts the 
acquisition and makes the program exit the measuring mode so the oscilloscope settings can 
be altered again. 
 
 



-In case of Auto or Normal trigger mode (Figure 39): 
In this case the trigger level stays the same as in the trigger settings. 

 
Figure 39: Auto or Normal trigger mode 
 
To become the final trigger level, there needs to be a check whether this (calculated) trigger 
level is within the Vertical range of the channel of the trigger source. If the trigger level is out 
of this range, a fatal error will occur. Therefore the following steps are made: the trigger 
source is checked and the vertical range of that channel is taken: this is done with an “Equal?” 
and a select element. When half of this Vertical range (by using a dividing element) is higher 
then the trigger level, the trigger level is out of range and the final trigger level becomes the 
maximum possible trigger level for this vertical range. If the trigger level is in range, the 
correct level is used. This is done with a comparing and a select element.  
After this, the niScope Configure Trigger Edge.vi configures the driver for edge triggering 
with the appropriate settings. 

3.3 Data fetch (OscRead.vi) 
The actual acquisitions starts in this vi. The DAQ will fetch the data and convert it into strings 
to send back to the client. All the settings from the first string are passed trough from the 
OscSetup.vi. As the driver is already configured in the OscSetup.vi, the only thing that needs 
to be done here is performing the measurements, error handling and building the response 
string. 
 

 
Figure 40: The OscRead.vi 
 
The Channel list, consisting out of 1 constant string (0,1), is used to enable both channels for 
the measurements. The reasons for this are already mentioned before. Some settings coming 
from the OscSetup.vi trough the output cluster are clustered and are passed to the appropriate 
vi’s. Like in the OscSetup.vi the instrument handle and the errors are always passed trough 
the different blocks in the block diagram. 



3.3.1 niScope Multi Fetch Binary 8.vi 
The scaled voltage data is fetched here in consideration of all settings made before. This vi 
returns the ”wfm” and the “wfm info” as output. The waveform (wfm) is an array of clusters, 
each containing the “initial x value”, the “x increment” and a waveform array per channel. 
The waveform info (wfm info) is an array of clusters which contains all the timing and scaling 
information for each waveform (actualSamples, absoluteInitialX, relativeInitialX, xIncrement, 
gain and offset). 

3.3.2 CheckError.vi 
The task of this vi is to check whether the Multi Fetch Binary 8.vi was able to perform his 
task correctly. The vi checks wether the “BFFA2003”-error occurred, which is the 
“niscope_error_max_time_exceeded” error. It indicates a trigger timeout. 
 
First step is to unbundle the error cluster and check if there actually is an error (this is 
determined with the boolean out of the cluster). The two cases are split up with a case 
structure: 
In case of false: 
If there is no error, the “error in” just gets connected to the “error out” and the “Time out” 
remains false. 
 
In case of true:  
If there is an error, there are two possibilities: the error is equal to the “BFFA2003” error or it 
is not. This is checked with an Equal element so the two cases can again be split up with a 
case structure. The result of the Equal element also determines the Time out boolean. 
In case of false: the error is not equal to the “BFFA2003” error 
In this case there is another error which must be connected to the “error out”. 
In case of true: the error is the “BFFA2003” error 
Because the Time out became already true, the error gets reset.  
 

 
Figure 41: Check Error subvi 



3.3.3 The Check Trigger vi 

 
Figure 42: the Check Trigger.vi (case true, Auto Mode) 
 
Depending whether the timeout occurred in the “Multi Fetch Binary 8.vi”, an appropriate case 
is selected. 
 
In case of false the time out didn’t occur so the data can be passed on directly to the Scan to 
String.vi. 
 
In case of true the Timeout occurred. The triggering mode is changed into immediate 
triggering. First the acquisition needs to be aborted (niScope Abort.vi) then the oscilloscope is 
configured for immediate triggering (niScope Configure Trigger Immediate.vi) and finally a 
waveform acquisition can be initiated again (niScope Initiate Aqcuisition.vi): see Figure 42. 
Again the Check Status.vi is used to check whether the oscilloscope is ready to perform 
measurements (see earlier).  
After this a distinction between Normal/Auto Level and Auto is made:  
In case of Auto Mode 
In this case the oscilloscope has to trigger immediately so the niScope Multi Fetch Binary.vi 
can just start to Fetch data. This vi will return the adjusted “wfm info”, “wfm”, instrument 
handle and error out as output. 
In case of Normal/Auto Level 
In this case, it was not possible to trigger with the configured settings. No data is fetched and 
in the response string there won’t be any waveform data included. Normally in Autolevel, 
there won’t be a timeout but a case for this is mandatory in LabVIEW. 
 
 
 
 
 
 
 
 
 
 
 
 



3.3.4 The measurements vi 
The task of this vi is to perform measurements on the data channels. 
 

 
Figure 43: measurements.vi 
 
The measurements cluster contains three pairs of values (one pair per measurement) 
determines which measurements are requested on which channel. 
 
First the instrument handle and the error in are given as input to a Property Node element 
which gets and/or sets properties of the reference. In this case channel B is used as reference 
to make for example phase measurements on channel A and vice versa. This element will 
return the adjusted instrument handle and the errors. 
For every measurement that needs to be executed, a measurement request and a channel (both 
from the “measurements cluster” input) must be linked to the “Execute Measurement” subVI. 
 

 
Figure 44: Execute Measurements subVI 
 
In case the Error In contains an error, the instrument handle and error signal will be directly 
connected to the output. The result will be set to “0,0”. If there’s no error, the first step in the 
“executemeasurements” subVI is checking if the channel on which the measurement must be 
done is enabled. This is done with a case structure in the “Check_Channel” subVI: it will 
return a true boolean if the requested channel is enabled. A Measurement Selection of 4000 
means that no measurement is requested. So only when the channel is enabled and the 
Measurement Selection is not equal to 4000, a measurement will be performed. This check is 
done with an Equal, a NOT and an AND logical port. The result of the AND-port is connected 
to the selector terminal of a case structure: 
In case of false: No need for measuring 
The instrument handle in and the error in are directly connected to the instrument handle out 
and the error out. The result must be set on 0,0 as specified in the protocol. 
 



In case of true: Measuring is necessary  
For doing the measurement, the niScope Fetch Measurement.vi is used. The channel needs to 
be in a string form so a Number to Decimal String element is used to make the correct 
conversion. The timeout is set on zero to tell the NI-scope to fetch whatever is currently 
available. 
 
The results of the three Execute Measurements can now be clustered together for submitting 
them to the Scan to String.vi.  

3.3.5 The scan to String vi 

 
Figure 45: Scan to String vi 
  
The purpose of this vi is to make a string according to the protocol (see 



Appendix D). This string must contain the following values: 
-Horizontal: the actual sample rate and the actual record length. 
-Channel (2 times): the probe attenuation, the vertical range, the vertical offset, the gain and 

the waveform (which is an array of bytes). 
-Measurements (3 times) 
-Trigger: the received boolean and the level. 
  
The actually used horizontal values are fetched with the “niScope Sample Rate.vi” and the 
“niScope Actual Record Length.vi”. If both channels are disabled, the actual record length is 
set to zero. The NAND port behind the “channels cluster” takes care of that. After that they 
are put into a string with a Format Into String element. 
Now the vertical settings are added to the string. The probe attenuation and the vertical range 
are fetched from the “niScope Query Vertical.vi”, the offset and gain from the “wfm info”. 
The “Channel on/off” subVI (Figure 46) then checks if the channel is enabled. If this is the 
case it will execute the “Array2string.vi” which will convert the data array into a string. If it is 
disabled a new array (size equal to the actual record length) with only “zero” values will be 
created instead of the actual data. 

 
Figure 46: Channel ON/OFF vi 
 

 
Figure 47: Array2String.vi 
 
The array to string conversion is executed in a while loop. For every iteration until the actual 
record length is reached, an element is fetched from the array and added to a string using a 
format into string element. This string is passed on to the next iteration using a shift register. 
Once the actual record length is reached the complete string can be sent to the output. 
After adding this string the results (doubles) from the three measurements are added to the 
string, followed by the information on the trigger which contains one Boolean (trigger found 
or not) and one double containing the trigger level. This last value is fetched out of the 
“niScope Query Trigger Edge.vi”. 

3.3.6 The niScope Abort and the niScope Close vi 
After making all the necessary measurement to create the needed Output string for this 
“OscRead” vi, the  acquisition needs to be aborted and the session needs to be closed to be 
ready for a next cycle. This is done with the niScope Abort and the niScope Close.vi. The 



“niScope Abort” vi gets the “instrument handle” and the “error in” inputs from the Scan to 
string vi and the outputs of this “niScope Abort” vi are the inputs of the “niScope Close” vi. 
 

3.4 Notes for client module implementation 
As already stated before this oscilloscope is structured in two blocks. The reason for this is the 
need to use the oscilloscope remotly controlled. The oscilloscope is completely operated by a 
normal text string. The oscilloscope works with two setup strings and one response string. 
 
A first string is used to configure the oscilloscope. This string executes the OSCsetup virtual 
instrument. This VI calculates the needed values (for example the trigger level in autolevel 
triggering mode) and passes them to the oscilloscope. This VI doesn't return anything to the 
client. 
 
The second step the client needs to do is asking the data by sending another string. This will 
execute the OSCread VI. This VI will perform all the requested measurements and return the 
available data in a response string to the client. 
 
The client module should take care of sending the two strings not too fast after each other 
because the OSCsetup needs time to execute. Also for some settings the client module has to 
take care that their values are not going out of bounds as this will result in an error not 
reported in the output string. 
 
Another point the client should take care of is the enabling/disabling of channels. When both 
channels are disabled, the oscilloscope won't return any data for any channel. However when 
only one channel is disabled, the oscilloscope will send an array of zero's instead of that 
channel's data. The client should recognize the on/off state in it's own control panel and take 
care of this by itself. 
 
For the appropriate string settings and response (the protocol) we refer to the Distance 
Laboratory, Protocol Specification version 3.0 available at the Blekinge Institute of 
Technology. The oscilloscope part of this is found in Appendix C and 



Appendix D. 
 
For the possible measurements and the boundaries that should be respected in the setup string; 
we refer to the NI 5112 digitizer manual available at the website of National Instruments.  
 

3.5 Test environment 
To check the proper functioning of the OSCsetup and the OSCread a test environment has 
been created. It replaces the user interface that will be used to control the more advanced 
oscilloscope once it is implemented in the remote lab. 
The test environment consists out of three sections: a “Setup section”, a “Read section”, and a 
“Graphical output”. The purpose of the “Setup section” is to send all necessary parameters in 
a string to the OSCsetup.vi. The “Read section” will transform the string received from the 
OSCread back to separated and useful values. The “Graphical output” will give, much like a 
real oscilloscope, a quick image of the acquired signal.  
During the tests, the oscilloscop reads in data from a function generator with known settings.  

3.5.1 Setup Section 

The front panel of this part of the test environment looks like the control panel of a normal 
oscilloscope (see Figure 48). In case of “autoscale” the OSCsetup will ignore all parameters 
that you define here, so for testing purposes it should be placed in the “OFF” position. The 
“remaining string” element is solely for testing purposes, all data in that controller should be 
ignored and passed on by both the OSCsetup and the OSCread. The other controls will 
provide parameters according to the “oscilloscope request protocol” (see 



Appendix D). 
 

 
Figure 48: Setup Front Panel 
 
In the block diagram (Figure 49) all values from the input have to be inserted into the string 
that will control the OSCsetup. The fist value to add by using a “format into string” element, 
is the “autoscale Boolean”. The next value is the “Minimal Sample Rate” (MS/s) which is 
calculated using the following formula: “record length” * 100 / “ms/div setting” . The “100” 
in this formula comes from “1000” (milliseconds/second) divided by “10” (div/screen).Then 
the other values from the “horizontal configuration” section are added to the string, followed 
by the “ON/OFF” Boolean value for “channel 1”. If a channel is disabled, the OSCsetup 
doesn’t expect the other values from the vertical setup for that channel, this can be done using 
a case structure as seen in Figure 49. All remaining values are inserted into the string in the 
correct order using “format into string” elements. 
Once the final data is attached, the string is connected to the OSCsetup which was explained 
earlier. 
 



 
Figure 49: Setup Block Diagram 
 

3.5.2 Read Section 
In the read section the output from the OSCread is tested. This output is the string that will be 
sent back to the client, once it is implemented in the remote lab. It contains the signal data, 
measurement results and all necessary oscilloscope settings to provide a correct image on the 
oscilloscope waveform graph. The order in which all elements from this string are presented, 
is described in the “oscilloscope response protocol” (see 



Appendix D). 
While the string is being stripped, all parameters that are read will be presented on the “read 
sections” front panel (Figure 50). The signal data will be used in the third section of the 
testing environment. 
 

 
Figure 50: Front Panel of the Read section 
 
 
The stripping of the “response string” from the OSCread (see Figure 51) starts by detaching 
the “horizontal setting” parameters: the “actual sample rate”, and the “actual record length”. 
Then a subVI (Figure 52) will strip off all vertical settings for one of the channels, and all the 
signal data, using a while loop with the amount of iterations linked to the “actual record 
length” (default case in case structure). If however the “actual record length” equals “0”, no 
data is included in the “response string” and an empty array will be created as seen in the “0-



case” (Figure 52). Once both channels have been stripped, two more “scan from string” 
elements will be used to strip the remaining parameters from the “response string”. 
 

 
Figure 51: Read Block Diagram 
 
 

 
Figure 52: String to Data Array 
 
 

3.5.3 Graphical Output 

The front panel of this part has three waveform graphs that look like oscilloscope screens. 
The first one (Figure 53) receives an array directly from the OSCread and shows the signal in 
volts. The second one (Figure 55) gives the exact same output (signal in volts) but it’s input is 
created from the data array that was extracted from the OSCread output string. The third one 
(Figure 56) also uses the data extracted from the OSCread output string, but it shows the 
signal the way it would appear on a scope with the same settings as those defined in the setup 
section. 
 
 



 
Figure 53: Graphic Output Screen 1 
 
The screen in “Figure 53” gives the signal with a time based X-axis and a voltage based Y-
axis. The data presented is fetched from the “wfm” (wave form matrix) multiplied with the 
“relativeInitialX” from the “wfm info” and increased with the “xIncrement”. These last values 
are actually the gain and the offset for the signals. 
 
 
 

 
Figure 54: Graphic Output Screen 1 Block diagram  
 

 
Figure 55: Graphic Output Screen 2 
 
The graph that can be seen in Figure 55, shows the signal in the same way as the graph from 
Figure 53. The data presented are the values from the data arrays multiplied by the gain, 
increased with the offset and then multiplied by the probe attenuation. The range of this graph 
depends on the maximal vertical range, read in from both “Channel” clusters. (See Figure 57) 



 

 
Figure 56: Graphic Output Screen 3 
 
The waveform graph from Figure 56 presents the signal as it would be seen on a normal 
oscilloscope with the same settings. The data presented is read from the arrays in the 
“Channel 1” and “Channel 2” clusters  divided by “32”, this way the minimal and maximal 
values will be at the bottom and on the top of the screen. (See Figure 57) 
 
 
 
 

 
Figure 57: Graphic Output Block Diagram 
 
 



4 Conclusions 
One of the purposes of this document is to give a better view on the different possibilities of 
oscilloscopes. What is a better way to do this then to implement one?  
Of course in the end the remote oscilloscope is developed which was the main goal of this 
work. This oscilloscope will be used in the distant laboratory of the Blekinge Institute of 
Technology (http://www.bth.se). Different kinds of schools around the world rent laboratory 
time on the servers of BTH. (http://distanslabserver.its.bth.se). Hopefully this paper gives a 
clear view on the working of the oscilloscope, the most important instrument in this 
laboratory. In this way this paper should also provide a better understanding of LabVIEW for 
the reader. 
 
Developing the basic oscilloscope was an excellent way to learn how to work with LabVIEW. 
The way this oscilloscope is implemented is the result of thoroughly testing and changing the 
whole concept. For making it more transparent; the oscilloscope was restructured several 
times. The code will also be submitted to National Instruments. It will be published on their 
website (http://www.ni.com) as a good example on how to build instruments around the basic 
acquisition boards they provide. The oscilloscope will also be used as an example in 
LabVIEW lectures at BTH. Hopefully the final result is clear enough to be understandable for 
every reader of this report as well as for all the interested customers of National Instruments.  
At last there are still two existing problems in the basic oscilloscope. The first problem is the 
buffer overrun error discussed in the performance paragraph. Also a possible solution is 
suggested in that paragraph. The second problem is the maximum/minimum value calculation 
in AC mode. It can happen that in AC mode the signal is out of range as the maximum and 
minimum value are calculated only considering the volts/division setting, the position knob 
and the maximum Y-scale for the waveform graph. For example: when the signal has a high 
offset; this offset is removed by the AC-filter. Although it's possible that a signal that is 
considered out of range in the maximum/minimum value calculation is displayed anyway. 
When displaying the signal in DC mode, this is not a problem as the signal is out of the 
window of the waveform graph. This problem was solved by using the maximum possible 
range when one of the channels is in AC mode. The user of the oscilloscope should know that 
it’s not possible to do such accurate measurements in AC mode and should work in DC mode 
while using the position knobs. Of course this can be solved with a much more complex 
algorithm; but this will make the oscilloscope too complex as the goal of this first part of the 
project is to be basic and understandable. Generally speaking this is a limitation of the AC-
mode, and the user of the oscilloscope should be aware of this. 
 
The second oscilloscope is only tested with the discussed testing environment. It's not yet 
implemented in the existing distant laboratory. Therefore at the moment of writing, nothing is 
known about the performance of this code. Anyway this code seems very promising and will 
be added in the distant laboratory in the summer of 2005. When a client module is 
implemented for this oscilloscope, the developer should take care of all advices mentioned in 
the notes for client module implementation (see earlier).  
 
In the end it's a pity there was no time left to develop the function generator for the remote 
laboratory. This function generator still needs to get rebuild as the existing code contains 
some errors and many blanks. Also the existing code of the function generator is not 
structured in a good way. Of course the existing program works, so it's not a disaster that the 
function generator has not been rebuild. This can be done in a later stage. 



APPENDIXES 
 
Appendix A: Introduction to LabVIEW  
LabVIEW is a computer program designed by National Instruments 
(http://www.ni.com/labview/). It’s a graphical programming language that uses icons instead 
of lines of text to create applications. In contrast to text-based programming languages, where 
instructions determine program execution, LabVIEW uses dataflow programming, where the 
flow of data determines execution. 
 
LabVIEW programs are called virtual instruments, or VIs, because their appearance and 
operation imitate physical instruments. Every VI uses functions that manipulate their input 
and display or move this information to other VIs or other computers. Any VI contains three 
elements: a “front panel”, which serves as a user interface, a “block diagram”, which contains 
the graphical code of the VI and an “icon and connector pane”. The icon and connector pane 
identifies the interface to the VI so that you can connect the VI in the block diagram. A VI 
within another VI is called a subVI. A subVI corresponds to an abject oriented subroutine in 
text-based programming languages.  
 
First there has to be build a user interface in LabVIEW by using a set of tools and objects, 
which is called the front panel. Then you add code in the block diagram using graphical 
representations of functions to control the front panel objects. In some ways, the block 
diagram resembles a flowchart. 



 
Appendix B: Features Supported by High-Speed Digitizers 

 NI 5122 NI 5124 NI 5102 NI 5112 NI 5911 NI 5620 NI 5621 

Timing         
Maximum 
Real-Time 
Sample Rate 

100 MS/s 200 MS/s  20 MS/s 100 MS/s 100 MS/s 64 MS/s 64 MS/s 

Maximum 
RIS Sample 
Rate 

2 GS/s 4 GS/s  1 GS/s 2.5 GS/s 1 GS/s — — 

Time Stamps Absolute, 
Relative 

Absolute, 
Relative  

Relative Absolute, 
Relative 

Relative Absolute, 
Relative 

Absolute, 
Relative 

Memory        
Memory per 
Channel 

8, 32, 
256, or 
512 MB  

8, 32, 
256, or 
512 MB  

663 KB  16 MB or 
32 MB  

4 MB or 
16 MB  

16 MS or 
32 MS 

(not using 
DDC) 

8 MS or 
16 MS 
(using 
DDC) 

32 MS 
(not using 

DDC) 
16 MS 
(using 
DDC) 

Input 
Configuratio
n 

       

Maximum 
Input Range 

±5 V (50 
Ω), ±10 V 
(1 MΩ) 

±5 V (50 
Ω), ±10 V 
(1 MΩ)  

±5 V ±25 V ±10 V ±1 V (±10 
dBm) 

±1 V (±10 
dBm) 

DC Offset Y Y  N Y N N N 

Input 
Impedance 

1 MΩ, 50 
Ω 

1 MΩ, 50 
Ω  

1 MΩ 1 MΩ, 50 
Ω 

1 MΩ 50 Ω 50 Ω 

Input 
Coupling 

AC (1 
MΩ 

only), 
DC, GND 

AC (1 
MΩ 

only), 
DC, GND  

AC, DC AC, DC AC, DC AC only DC only 

3 dB 
Bandwidth 

0 MHz to 
100 MHz, 
0 MHz to 
20 MHz, 
or 0 MHz 

to 35 
MHz 

(analog 
filter) 

0 MHz to 
150 MHz, 
0 MHz to 
20 MHz, 
or 0 MHz 

to 60 
MHz 

(analog 
filter—
default) 

0 MHz to 
15 MHz 

0 MHz to 
100 MHz 
or 0 MHz 

to 20 
MHz 

(analog 
filter) 

0 MHz to 
100 MHz 

10 kHz to 
36 MHz 

0 MHz to 
36 MHz 

Triggering         



Reference 
(Stop) Trigger 
Types 

Immediat
e, Analog 

Edge, 
Digital 
Edge, 

Hysteresis
, Window, 
Software, 

Video 

Immediat
e, Analog 

Edge, 
Digital 
Edge, 

Hysteresis
, Window, 
Software, 

Video  

Immediat
e, Analog 

Edge, 
Digital 
Edge, 

Hysteresis
, Window 

Immediat
e, Analog 

Edge, 
Digital 
Edge, 

Hysteresis
, Window, 
Software 

Immediat
e, Analog 

Edge, 
Digital 
Edge, 

Hysteresi
s, 

Window, 
Software 

Immediat
e, Digital 

Edge, 
Software, 
Analog 
Edge, 

Analog 
Window, 
Analog 

Hysteresis 

Immediat
e, Digital 

Edge, 
Software, 
Analog 
Edge, 

Analog 
Window, 
Analog 

Hysteresis 

Reference 
(Stop) Trigger 
Sources 

CH 0, CH 
1, TRIG, 
PFI<0..1>

, 
RTSI<0..
7>, PXI 

Star 

CH 0, CH 
1, TRIG, 
PFI<0..1>

, 
RTSI<0..
7>, PXI 

Star  

CH 0, CH 
1, TRIG, 
PFI<1..2>

, 
RTSI<0..
6>, PXI 

Star 

CH 0, CH 
1, TRIG, 
PFI<1..2>

, 
RTSI<0..
6>, PXI 

Star 

CH 0, 
PFI<1..2

>, 
RTSI<0..

6> 

PFI 1, 
RTSI<0..
6>, PXI 

Star 

PFI 1, 
RTSI<0..
6>, PXI 

Star 

Trigger 
Coupling 
(External 
TRIG Input) 

AC, DC, 
LF 

Reject, 
HF 

Reject, 
AC + HF 

Reject 

AC, DC, 
LF 

Reject, 
HF 

Reject, 
AC + HF 

Reject  

AC, DC AC, DC — — — 

Trigger 
Coupling 
(Analog Input 
Channel) 

Same as 
Input 

Channel, 
HF 

Reject, 
LF Reject 

Same as 
Input 

Channel, 
HF 

Reject, 
LF Reject  

Same as 
Input 

Channel 

AC, DC Same as 
Input 

Channel 

Same as 
Input 

Channel 

Same as 
Input 

Channel 

Trigger 
Holdoff 

From 
trigger to 
trigger 

From 
trigger to 
trigger  

From end 
of 

acquisitio
n to 

trigger 

From 
trigger to 
first point 
of next 
record 

From 
trigger to 
first point 

of next 
record 

— — 

Trigger Delay Y Y  N Y N N N 

External 
TRIG Input 
Impedance 

1 MΩ 1 MΩ  1 MΩ 1 MΩ, 50 
Ω 

— — — 

Clocking        
Reference 
Clock Input 
Sources 

CLK IN, 
PXI 

Clock 10, 
RTSI 
Clock 

(RTSI 7) 

CLK IN, 
PXI 

Clock 10, 
RTSI 
Clock 

(RTSI 7)  

PFI<1..2>
, RTSI 
Clock 

(RTSI 7) 

PFI<1..2>
, RTSI 
Clock 

(RTSI 7), 
PXI 

Clock 10 

PFI<1..2
>, RTSI 
Clock 

(RTSI 7) 

REF CLK 
IN 

(External)
, PXI 

Clock 10 

REF CLK 
IN 

(External)
, PXI 

Clock 10 

Reference 1 MHz to 1 MHz to 20 MHz 10 MHz 10 MHz 10 MHz 10 MHz 



Clock 
Frequency 

20 MHz 
(1 MHz 

increment
s) 

20 MHz 
(1 MHz 

increment
s)  

Reference 
Clock Outputs 

CLK 
OUT, 

PFI<0..1>
, 

RTSI<0..
6> 

CLK 
OUT, 

PFI<0..1>
, 

RTSI<0..
6>  

PFI<1..2>
, RTSI 
Clock 

(RTSI 7) 

PFI<1..2>
, RTSI 
Clock 

(RTSI 7) 

PFI<1..2
>, RTSI 
Clock 

(RTSI 7) 

— — 

PCI Internal 
Reference 
Clock Outputs 

CLK 
OUT, 
RTSI 
Clock 

(RTSI 7) 

CLK 
OUT, 
RTSI 
Clock 

(RTSI 7) 

PFI<1..2>
, RTSI 
Clock 

(RTSI 7) 

PFI<1..2>
, RTSI 
Clock 

(RTSI 7) 

PFI<1..2
>, RTSI 
Clock 

(RTSI 7) 

— — 

External 
Sample Clock 
Sources 

CLK IN, 
PXI Star 

CLK IN, 
PXI Star  

PFI<1..2>
, 

RTSI<0..
6> 

— — — — 

External 
Sample Clock 
Frequency 

30 MHz 
to 105 
MHz 

50 MHz 
to 210 
MHz  

1 kHz to 
20 MHz 

— — — — 

Sample Clock 
Outputs 

CLK 
OUT, 

PFI<0..1>
, 

RTSI<0..
6> 

CLK 
OUT, 

PFI<0..1>
, 

RTSI<0..
6>  

PFI<1..2>
, 

RTSI<0..
6> 

— — — — 

Acquisition        
Acquisition 
Modes 

Normal Normal  Normal Normal Normal, 
Flex Res 

Normal, 
DDC 

Normal, 
DDC 

Multiple 
Records 

Y Y  N Y Y Y Y 

Continuous 
Acquisition 

Y Y  N Y N Y Y 

Synchronizat
ion Triggers 

       

Arm 
Reference 
Trigger 
Sources 

PFI<0..1>
, 

RTSI<0..
7>, PXI 

Star 

PFI<0..1>
, 

RTSI<0..
7>, PXI 

Star  

— — — — — 

Record 
Advance 
Trigger 
Sources 

PFI<0..1>
, 

RTSI<0..
7>, PXI 

PFI<0..1>
, 

RTSI<0..
7>, PXI 

— — — — — 



Star Star  

Record Arm 
Trigger 
Sources 

— —  — PFI<1..2>
, 

RTSI<0..
6> 

— — — 

Start Trigger 
(Acquisition 
Arm) Sources 

PFI<0..1>
, 

RTSI<0..
7>, PXI 

Star 

PFI<0..1>
, 

RTSI<0..
7>, PXI 

Star  

PFI<1..2>
, 

RTSI<0..
6>, PXI 

Star 

— — — — 

Reference 
(Stop) Trigger 
Outputs 

PFI<0..1>
, 

RTSI<0..
6> 

PFI<0..1>
, 

RTSI<0..
6>  

PFI<1..2>
, 

RTSI<0..
6> 

PFI<1..2>
, 

RTSI<0..
6>, PXI 

Star (PXI 
Slot 2 
only) 

PFI<1..2
>, 

RTSI<0..
6> 

PFI 1, 
RTSI<0..

6> 

PFI 1, 
RTSI<0..

6> 

End of Record 
Outputs 

PFI<0..1>
, 

RTSI<0..
6> 

PFI<0..1>
, 

RTSI<0..
6>  

— PFI<1..2>
, 

RTSI<0..
6> 

— — — 

End of 
Acquisition 
Outputs 

PFI<0..1>
, 

RTSI<0..
6> 

PFI<0..1>
, 

RTSI<0..
6>  

— — — — — 

Start Trigger 
Outputs 

PFI<0..1>
, 

RTSI<0..
6> 

PFI<0..1>
, 

RTSI<0..
6>  

PFI<1..2>
, 

RTSI<0..
6> 

— — — — 

Master–Slave 
Trigger Delay 
Correction 

N N  N Y N N N 

Miscellaneou
s 

       

Self-
Calibration 

Y Y  RIS 
Timing 
Only 

Y Y N N 

Probe 
Compensation 

PFI 1 (1 
kHz) 

PFI 1 (1 
kHz)  

PFI 1 (1 
kHz) 

PFI 1 (1 
kHz) 

PFI 1 (1 
kHz) 

— — 

LabVIEW 
Real-Time 
Support 

Y Y  N N N N N 

 
 



Appendix C: Oscilloscope Request 
Each element should be separated by space. 
 
<Function><...> 
 

<Function> Enum 
Setup 0 
Fetch data 1 

 
Fetch:  <Nil> 
Setup:  <Autoscale><Horizontal Conf><Channel * 2> 

<Trigger><Measurement * 3> 

 
Setup does not return any data. To do that you have to send fetch data (as function). The fetch 
request doesn’t have any other parameters. Setup must be done before fetch.  
 
<Autoscale> : Boolean 

If autoscale is used the oscilloscope makes all settings according to the signal. (This is a 
function created by NI and we don’t have any opportunities to change anything). 
 
<Horizontal Conf> : <Min. Sample Rate><Reference Position> 

: <Record Length> 
 
<Horizontal Conf.Min. Sample Rate> : Double 

Specifies the sampling rate for the acquisition.  
Units: Samples per second  
Valid Values: The combination of sampling rate and minimum record length must allow 
the digitizer to sample at a valid sampling rate for the acquisition type specified in niScope 
Configure Acquisition and not require more memory than the onboard memory module 
allows. 
NI Default Value: 20 MS/s 
 
<Horizontal Conf.Reference Position> : Double 

Specifies the position of the Reference Event in the waveform record as a percentage of the 
record. When the digitizer detects a trigger, it waits the length of time the Trigger Delay 
property specifies. The event that occurs when the delay time elapses is the Reference 
Event. The Reference Event is relative to the start of the record and is a percentage of the 
record length. For example, the value 50.0 corresponds to the center of the waveform record 
and 0.0 corresponds to the first element in the waveform record. 
NI Default Value 50.0% 
 
<Horizontal Conf.Record Length>  : Integer 

Passes the minimum number of points you need in the record for each channel; call niScope 
Actual Record Length to obtain the actual record length used. Refer to Coercions of 
Horizontal Parameters for more information about why the record length may be different 
than what was specified.  
Valid Values: Greater than 1; limited by available memory 
NI Default Value 1000 



 
 
<Channel>  : <Enable> 

 
<Channel.Enable> : Boolean 
False: <Nil> 
True: <Vertical coupling><Vertical range><Vertical offset> 

<Probe attenuation> 
If false no more channel parameters should be sent. 
 
<Channel.Vertical coupling> Enum 
AC 0 
DC 1 
GND 2 

Specifies how the digitizer couples the input signal for the channel. When changing input 
coupling, the input stage takes a finite amount of time to settle. 
 
<Channel.Vertical range> : Double 

Specifies the absolute value of the input range for a channel. The units are volts. For 
example, to acquire a sine wave that spans between –5 and +5 V, set the Vertical Range 
property to 10.0 V. If the signal is outside vertical range, the response will be clamped to the 
measurement window, eg. +/- vertical range. 
 
<Channel.Vertical offset> : Double 

Specifies the location of the center of the range. The value is with respect to ground and is 
in volts. For example, to acquire a sine wave that spans between 0.0 and 10.0 V, set this 
property to 5.0 V. 
 
<Channel.Probe attenuation> : Double 

Specifies the probe attenuation for the input channel. For example, for a 10:1 probe, you 
would set this property to 10.0.NI Default Value 1.0 
Limits: Any positive real number. Typical values are 1, 10 and 100. 
 
 



<Trigger>  : <Source><Slope><Coupling><Level><Holdoff><Delay> 
: <Trigger mode><Timeout> 

 
<Trigger.Source> Enum 
Channel 1 0 
Channel 2 1 
Immediate 2 
External trigger 3 

 
<Trigger.Slope> Enum 
Positive 0 
Negative 1 

 
<Trigger.Coupling> Enum 
AC 0 
DC 1 
 
<Trigger.Level> : Double  

Specifies the voltage threshold for the trigger. The units are volts. The value you pass for 
this parameter must meet the following conditions. Trigger Level <= Vertical Range/2 + 
Vertical Offset and Trigger Level >= (-Vertical Range/2) + Vertical Offset 
 
<Trigger.Holdoff> : Double 

Specifies the length of time the digitizer waits after detecting a trigger before enabling the 
trigger subsystem to detect another trigger. The units are seconds. This property affects 
instrument operation only when the digitizer requires multiple acquisitions to build a 
complete waveform.  
NI Default Value: 0.0 s 
 
<Trigger.Delay> : Double 

Specifies the trigger delay time in seconds. The trigger delay time is the length of time the 
digitizer waits after it receives the trigger. The event that occurs when the trigger delay 
elapses is the Reference Event. 
NI Default Value: 0.0 s 
 

 
<Trigger mode> Enum 
Normal 0 
Auto 1 
Auto level 2 
 

Normal:  If no trigger is received an error message is returned. 
Auto: If no trigger is received an immediate trigger is set. 
Auto level : If no trigger is received a volt max measurement is performed and the trigger 
level is adjusted according to this. If no volt max level is found an immediate trigger is set. 
 
<Trigger.Timeout>  : Double 
Defines how long the fetch function shall wait for a trigger before it 
timeouts. 

 



<Measurement>  : <Channel><Selection> 
 

<Measurement.Channel> Enum 
Channel 1 0 
Channel 2 1 
*Channel 3 3 
*Channel 4 4 
*currently not in use 

 
<Measurement.Selection> Enum 
AC Estimate 1012  
Area 1003  
Average Frequency 1016  
Average Period 1015  
Cycle Area 1004  
DC Estimate 1013  
Fall Time 1  
Falling Slew Rate 1011  
FFT Amplitude 1009  
FFT Frequency 1008  
Frequency 2  
Integral 1005  
Negative Duty Cycle 13  
Negative Width 11  
None 4000  
Overshoot 18  
Period 3 
Phase Delay 1018  
Positive Duty Cycle 14  
Positive Width 12  
Preshoot 19  
Rise Time 0  
Rising Slew Rate 1010  
Time Delay 1014  
Voltage Amplitude 15  
Voltage Average 10  
Voltage Base 1006  
Voltage Base to Top 1017  
Voltage Cycle Average 17  
Voltage Cycle RMS 16  
Voltage High 8  
Voltage Low 9  
Voltage Max 6  
Voltage Min 7  
Voltage Peak to Peak 5  
Voltage RMS 4  
Voltage Top 1007  

 



Appendix D: Oscilloscope response 
When an oscilloscope request is sent with function set to fetch, the oscilloscope will return 
(on success) a waveform for each channel enabled. 
Values that has not been requested are returned as 0.000000 
Notice: all channels are allways included in the response. 
 
<Horizontal><Channel *2><Measure *3><Trigger> 
 
 
<Horizontal.ActualSampleRate> : Double 

Returns the effective sample rate of the acquired waveform the digitizer acquires for each 
channel. 
 

<Horizontal.ActualRecordLength> : Integer 

The actual number of samples in the acquired waveform; this number may be less than 
numSamples if the number you request is not available. 

 
 
<Channel.ProbeAttenuation> : Double 

Specifies the probe attenuation for the input channel. 
 
<Channel.VerticalRange> : Double 

Specifies the absolute value of the input range for a channel. 
 

<Channel.VerticalOffset> : Double 

The offset factor of the given channel; useful for scaling binary data with the following 
formula  
voltage = binary data * gain factor + offset 
 

<Channel.Gain>  : Double 

The gain factor of the given channel; useful for scaling binary data with the following 
formula  
voltage = binary data * gain factor + offset  

 
<Channel.Waveform>  : Array of [ActualSamples] Bytes  

If ActualSamples is 0 then there will be nothing here. 
 
 
<Measure>   : Double 
 
 
<Trigger.Received>  : Boolean 

Return false if no trigger is received. 
 
<Trigger.Level>  : Double 

Returns the trigger level used. 
 
 
 
 


