

Katholieke Hogeschool Sint-Lieven
Departement Industrieel Ingenieur

Opleiding Elektronica
Optie Informatie- en Communicatietechnieken

Gebroeders Desmetstraat 1, 9000 Gent

Computer-based instruments for a remotely-operated
laboratory

This thesis report is made to gain the
degree of Industrial Engineer and is
produced by: Jonas Goossens, Matthias
De Groote and Katrien DeCoster.

Promoter: Dr. Sc. Ingvar Gustavsson

Academic year: 2004 - 2005

This paper is written as final project work to get the electronical engineering degree in Kaho
Sint Lieven, Ghent, Belgium. It’s written as part of a foreign exchange program for the
Blekinge Institute of Technology, Ronneby, Sweden.
We would like to thank all persons who helped us during our thesis and our Erasmus program.

First of all, we would like to thank our promoter Dr. Sc. Ingvar Gustavsson for his expert
counseling during the project.

We would also like to thank Ir. Luc De Backer and Teknologie Doktor Jörgen Nordberg the
institutional coordinators as well as Lena Magnusson and Hilde Lauwereys the international
relation officers for making our foreign exchange possible.

Abstract

Computer-based instruments for a remotely-operated laboratory

In traditional university laboratories students conduct experiments under the supervision of an instructor. A
remotely-operated laboratory for undergraduate education in electrical engineering which emulates a traditional
laboratory has been set up by Blekinge Institute of Technology (BTH). The laboratory is a client/server
application and the internet is used as the communication infrastructure. Students around the world can assemble
circuits simultaneously from electronic components in much the same way as they do in a traditional laboratory.
The teacher mounts the components to be used in the lab sessions in a circuit assembly robot. Students thus
control the robot by means of the wiring on the virtual breadboard displayed on the client PC. The difference
about this approach and simulating experiments is that we can study the limitations of the physical laws and
other mathematical models. Physical experiments also enable learners to experience common differences
between the physical world and simulations based on relevant mathematical models.

Our role is to design and implement virtual instruments with extended features in the experiment server of this
remotely-operated laboratory. We will use the LabVIEW programming language for this. This language differs a
lot from classic text-based programming languages like C, C++, java,...

The main goal of this paper is to build an oscilloscope to do measurements on the mounted components at the
virtual breadboard. The oscilloscope is the main and most advanced instrument. We will do this in two steps.
First we will make a simple oscilloscope. The purpose of starting to implement a basic oscilloscope is twofold.
The first advantage is that we learn using LabVIEW and the computer-based instruments concept. The second
advantage is that we become familiar with a basic scope.

When this simple oscilloscope is finished, we will see what we can do to build a more advanced oscilloscope.
Eventually we will use the high speed digitizer NI-5112 to emulate an Agilent 54622A oscilloscope.

One of our main purposes is to make structured code so other people can easily work on the project later on.
With this purpose in mind we first start working on a theory of operations. The advantage of this approach is that
we really get to know the underlying techniques of a general oscilloscope. In the coding process we can always
fall back to this theory when we are stuck with some theoretical or practical problems.

Key words:

LabVIEW
Oscilloscope
Virtual Instruments
Distant laboratory

Index
TWO COMPUTER-BASED OSCILLOSCOPES………………………………………………………
1 Introduction .. 6
2 Basic oscilloscope using a standard data acquisition board... 7

2.1 Introduction .. 7
2.1.1 The basic oscilloscope.. 7
2.1.2 The standard daq board .. 8

2.2 A preview of the program .. 9
2.3 Signal acquisition ... 10

2.3.1 Theoretical background.. 10
2.3.1.1 The vertical section .. 10
2.3.1.2 The horizontal section (Timebase)... 13

2.3.2 In LabVIEW... 14
2.3.2.1 The Vertical Range.vi .. 14
2.3.2.2 The Horizontal Range.vi .. 15
2.3.2.3 The Signal Input.vi ... 16
2.3.2.4 The ACDCGNDSelector.vi.. 16

2.4 Trace extraction.. 19
2.4.1 Theoretical Background ... 19
2.4.2 In LabVIEW (Extract Traces.vi) .. 20

2.5 Display of the traces... 25
2.5.1 The Map to Graph.vi .. 25
2.5.2 Configuration of the Waveform Graph .. 25

2.6 Performance ... 26
3 A more advanced oscilloscope using a high speed digitizer .. 28

3.1 Introduction .. 28
3.1.1 Advanced Oscilloscope .. 28
3.1.2 Remote Lab .. 28
3.1.3 Data acquisition using the NI-5112.. 29

3.2 Digitizer setup (the OscSetup.vi) ... 29
3.2.1 Strip_string.vi ... 30
3.2.2 In case of Autoscale mode: niScope Auto Setup.vi ... 32
3.2.3 In case of Normal mode: NormalSettings.vi .. 32

3.3 Data fetch (OscRead.vi) ... 36
3.3.1 niScope Multi Fetch Binary 8.vi .. 37
3.3.2 CheckError.vi ... 37
3.3.3 The Check Trigger vi ... 38
3.3.4 The measurements vi.. 39
3.3.5 The scan to String vi... 40
3.3.6 The niScope Abort and the niScope Close vi... 41

3.4 Notes for client module implementation.. 41
3.5 Test environment.. 42

3.5.1 Setup Section.. 42
3.5.2 Read Section... 44
3.5.3 Graphical Output .. 46

4 Conclusions .. 49

APPENDIXES…………………………………………………………………….………….………………...
Appendix A: Introduction to LabVIEW... 50
Appendix B: Features Supported by High-Speed Digitizers.. 51
Appendix C: Oscilloscope Request.. 55
Appendix D: Oscilloscope response .. 59

TWO COMPUTER-BASED OSCILLOSCOPES

1 Introduction
Although oscilloscopes aren’t really meant to make precise measurements, they are the most
used instruments in electronics and they are also used a lot in other specializations. The
oscilloscope is popular, not only because of the visual aspect but also because of the quality to
provide better knowledge of an unknown signal based on different variables. It is possible to
define the rise time, the amplitude, the fall time, the pulse width, and the period out of a pulse
signal projected on the screen. But at the same time, also the deviations which would be
unnoticed with other measuring instruments, are made visible. The signal can for instance
have high-frequent oscillations or noise. By using an oscilloscope it's also very easy to
compare two different signals.
The oscilloscope projects analogue signals on the screen and can analyze them on time base
or on frequency base (spectrum analyze).

In this work there will be a focus on the digital scope, and more precisely, a computer-based
oscilloscope. It's only since a few years that the digital scope has become widely available.
Until recently the technology didn't exist to build analogue/digital-converters (ADC) that
were fast and accurate enough to make digitizing scopes as practical as general purpose
instruments. Digitizing scopes must also have memories that can store input data as fast as it
is sampled. Again, such memories have not been available until recently. The difference
between a normal digital oscilloscope and a virtual or computer-based oscilloscope is that in
the latter one, the data is processed by software that is located on different hardware then the
hardware used to read the data in. This way the virtual oscilloscope can also be used in remote
programs, and the DAQ-board can be shared by multiple users.

This project will be divided into two different parts. The first part will describe a basic
computer based oscilloscope using a simple DAQ board. The second part describes a more
advanced oscilloscope, with a high-end digitizer. This one can also handle triggering and has
measurement options, next to it’s DAQ function. Another difference, other then the way of
acquiring data, is the way the information is passed on. The first oscilloscope will not be used
for remote measurements and thus the only data that has to be transferred is the data read in
by the DAQ. The more advanced oscilloscope however is used for remote purposes. In this
oscilloscope all the data will be converted into strings. This oscilloscope will be part of a
remotely-operated laboratory for undergraduate education in electrical engineering which
emulates a traditional laboratory. It has been set up by Blekinge Institute of Technology
(BTH). The laboratory is a client/server application and the internet is used as the
communication infrastructure. Students around the world can assemble circuits
simultaneously from electronic components much in the same way as they do in a traditional
laboratory. The teacher mounts the components to be used in the lab sessions in a circuit
assembly robot. Students thus control the robot by means of the wiring on the virtual
breadboard displayed on the client PC. The difference about this approach and simulating
experiments is that it is possible to study the limitations of the physical laws and other
mathematical models. Physical experiments also enable learners to experience common
differences between the physical world and simulations based on relevant mathematical
models.

2 Basic oscilloscope using a standard data acquisition
board

2.1 Introduction

2.1.1 The basic oscilloscope
In this case the oscilloscopes software is a LabVIEW program which processes the data
acquired by the data acquisition board USB-6009. A LabVIEW introduction can be found in
Appendix A. The user interface is a virtual front panel (see Figure 1) built in LabVIEW. A
basic oscilloscope doesn’t have many possibilities other then presenting the acquired signal
correctly formatted on the screen.

Figure 1: virtual front panel

A schematic view of the program can be seen in Figure 2. The setting on the front panel will
be passed on to the “DAQ”, the “extract traces” and the “output” modules. The DAQ module
uses the hardware to read the signal input in. The extract traces module calculates the trigger
point, and adjusts the data so in a way the signal is ready to be shown in the output module. In
the output module the signal is formatted correctly to the screen according to the front panel
settings.

Figure 2: Schematic Overview

2.1.2 The standard daq board
In this basic scope, the USB-6009 will be used as data acquisition hardware. It's a usb-device
produced by National Instruments (NI). The maximum sampling rate using two channels is
48000 samples/sec in total, so for 1 channel it is 24000 samples/sec. Testing confirmed these
values.

The NI USB-6009 provides connection to eight analog input (AI) channels, two analog output
(AO) channels, 12 digital input/output (DIO) channels, and a 32-bit counter when using a full
speed USB-interface.

Figure 3: the analogue input circuitry

In Figure 3 the analogue input circuitry can be seen. The circuitry consists out of four
sections: MUX, PGA, ADC and AI FIFO. Because the USB-6009 has only one analogue-to-
digital converter (ADC), a multiplexer (MUX) is needed. The MUX routes one AI channel at
a time to the programmable-gain amplifier (PGA). The PGA provides input gains of
1,2,4,5,8,10, 16 or 20 when configured for differential measurements or a gain of 1 when
configured for single-ended measurements. The PGA gain is automatically calculated based
on the voltage range selected in the measurement application. The analogue-to-digital
converter (ADC) digitizes the AI (analogue input) signal by converting the analogue voltage
into a digital code. The USB-6009 can perform both single and multiple A/D conversions on a
fixed or infinite number of samples. A quite small first-in-first-out (FIFO) buffer holds data
during AI acquisitions to ensure that no data is lost.
The USB-6009 can perform differential voltage signal measurements or single-ended
measurements. Differential measurements are the difference in voltage between two AI

inputs. A single ended measurement is the voltage between one analogue input and the
ground. The limitation on one AI channel is the [-10V -> +10V] range with respect for
ground. For example, if AI 1 is +10V and AI 5 is -10V, then the measurement returned from
the device is +20V in differential measurement mode. Although when a single ended
measurement is performed, there can only be measured in the [-10V -> +10V] range.

More information can be found on the national instruments website: http://www.ni.com/

2.2 A preview of the program

Figure 4: the OscUSB.vi

In Figure 4, a screenshot of a block diagram of the whole program is shown to get a general
view of it. For now it’s only important to notice a few things:

There are 6 inputs shown on the left: “YScale.Maximum” of the Waveform Graph, a constant
of 24000 for the scan rate (see later), “Trigger”, “Timebase”, “Vertical A” and “Vertical B”.
Except for the first two, these are LabVIEW clusters which can be manipulated from the
virtual front panel. A cluster is a group of signals (for example a Boolean and an integer). The
“YScale.Maximum” is fixed on 4 because of the 2 times 4 divisions wanted on the Y-axis.
The program provides 2 outputs: The “Timeout” and the “Waveform Graph” which are also
visible on he virtual front panel (Figure 1).

The program has been split up in 3 different sections:
• The signal acquisition
• The trace extraction
• The display of the traces

These sections are explained in the following paragraphs.

2.3 Signal acquisition
This section is mainly to define the vertical and the horizontal settings which is done in
consideration with the “Vertical A/B” inputs and the “Timebase” input. Before explaining
how this is implemented in labVIEW, some theoretical background is needed:

2.3.1 Theoretical background

2.3.1.1 The vertical section
The vertical section is the part of the oscilloscope which handles the displayed amplitude of
the input signal. It has three major functions, the first one being a filter with three modes: AC,
DC, GND. In this section, the part of the input which must be seen on the screen must be
defined. The second function is the position function, which enables to put an extra offset on
the signal. The third function in the vertical section is the voltage/division control. That
function controls the scale of the output. There is also an “on/off” setting to enable/disable a
channel.

In the filter part, DC-mode stands for “direct connect”. In this mode, the input signal does not
pass any filter before it reaches the next part of the circuit, and will be completely visible on
the output. In AC-mode you only see the “alternate current” part, you filter the “direct
current” part (offset) out of the signal. The third mode, the GND-mode makes the reference
level visible on the screen. Instead of having the input attached to the rest of the circuit, the
ground or base voltage level is attached. The result is a flat line on the screen at the position
level.

Figure 5 and Figure 6 might give a better view of this function. Figure 5 shows the input
signal, Figure 6 shows the output result for the different modes: DC, AC, GND. In DC-mode
giving the upper sinusoid, in AC-mode the lower one and in GND mode the output aligned to
the horizontal axis.

Figure 5: the input signal

Figure 6: the output signal in DC, AC and GND mode

With the voltage/division knob the scale in which the input signal is presented on the
oscilloscope screen can be altered. The more volts/division, the smaller the signal will appear
in the output. Figure 7 shows a sinusoid with a 3V amplitude (6Volt peak to peak), once with
the voltage/division knob set on 3V per division and once on 1V per division.
The oscilloscope’s voltage/division knobs will have the following discrete values: 5, 2, 1, 0.5,
0.2, and 0.1 V/div.

Figure 7: examples of different voltage/division modes

The last setting of the vertical section is the position knob. This knob controls the signals
offset in screen divisions. Both a negative and a positive offset are possible. It's used to
compare the DC levels of different signals, to put both channels of the oscilloscope on the
same GND-level and various other things. This is made clear in Figure 8.

Figure 8: examples of different vertical position modes

Combining the three parts of the vertical section, the following mathematical expressions can
be found:
For DC mode: o(t) = (i(t) + P)/v
For AC mode: o(t) = (iac(t) + P)/v
For GND mode: o(t) = P/v = constant

in which:
i(t) = iac(t) + Idc = input signal [Volt]

iac(t) = alternate current part of input signal [Volt]
Idc = direct current part of input signal [Volt]
v = voltage/division [Volt/divisions]
o(t) = output from vertical section [divisions]
P = position, offset [Volt]

2.3.1.2 The horizontal section (Timebase)
In the horizontal section, the following things are defined: the amount of seconds shown in
one division and the reference position:

Seconds/division:
= base setting or sweep speed
This is a scale factor. Horizontally, the screen has 10 divisions. So when the setting is 1 ms,
one horizontal division represents 1ms and the total screen width represents 10 x 1 ms = 10
ms (= the product of the amount of divisions (10) and the sweep speed (1ms))
Longer and shorter time intervals of the input signal can be seen on the screen by changing
the seconds/division.

The display is a matrix of pixels. The hardware produces a fixed number of samples per
sweep, for example 1000 samples (= buffer size). These samples should then be equally
divided horizontally on the display. The horizontal scale is set by the sample rate.

An example:
The sample rate is 1000 samples/s and each sweep is 1000 samples.
This means there is 1 sweep per second and because there are 10 divisions per sweep, the
horizontal scale is 0.1 s/div.
To become a fluent line on the screen a good sample rate is needed. The sample rate of 10000
samples/s is set as maximum which is equal to 10 ms/div:
10000 samples = 10 sweeps = 100 div;
1s = 1000 ms;
=> 1000ms/100div = 10ms/div
The following settings are enough: 10, 20, 50 and 100 ms/div.

Sample points are digital values which can be obtained out of an analog-to-digital converter
(ADC). This ADC is a part of the data acquisition hardware device. The intervals between the
samples refers to the time between the sample points and will define the sample rate. An other
way to set the correct timebase is altering the amount of samples by using a fixed sample rate.

Reference position:
By setting the reference position you can choose the horizontal position of the trigger point.
There are three discrete values: 10%, 50% and 90% of the screen. The default value is 50%.

2.3.2 In LabVIEW
As shown in Figure 4, this section contains the unbundling of the Vertical inputs, the Vertical
Range.vi, the Horizontal Range.vi, the Signal Input.vi and the ACDCGNDSelector.vi.
Two “Unbundle” elements split up the “Vertical A” and the “vertical B” inputs into the 4
settings for each channel: a Volt/division, a position, a boolean value that determines whether
the channel is enabled or not and a slide value which determines the coupling mode (AC, DC
or GND).
A description of the four subVI’s is given:

2.3.2.1 The Vertical Range.vi
This vi gets the following inputs: The Scale (Volts/div), the Position (div) and the coupling
mode of both channels and the Graph y-scale max (Div). The vi takes care of the gain
calculation and the maximum/minimum value calculation (Figure 9):

Figure 9: The Vertical Range.vi

Gain calculation
The gain for each channel can be calculated by inverting the selected voltage/division value.

Maximum/minimum Value Calculation
To find the maximum value, the absolute value of the position needs to be added with the
Graph y-scale max. This result is an amount of divisions and must be multiplied with the scale
to become a maximum in voltage. These calculations are made for both channels with an
Absolute Value, an Add and a Multiply element.

The maximum in voltage of both channels now needs to be compared with each other. The
highest value becomes the new maximum of the two channels. In LabVIEW this is done with
a Greater and a Select element. Because the usb-6009 has a limited range, the device its
maximum is +10V. This means that when the calculated value exceeds 10V, the maximum is
set on 10V. This is done with another Select element.
Another exception is made when the coupling of a channel is set to AC. In that case the
maximum range of the usb-6009 is used as well. This is done because there is no information

on what the maximum value visible on screen could be. This way a signal with a large offset
could appear as a clipped signal on screen when the min/max values are too small.

For the minimum, the negative value of the maximum is used and can be found with a Negate
element.

2.3.2.2 The Horizontal Range.vi

Figure 10: Horiz. Range.vi
In this vi, the Pretigger scans and the Sweep length (scans) are calculated out of the Time base
and the Max. scan rate (Sec/div): Figure 10.

To calculate the “Sweep length (scans)”, the following formula is used:

sweepvnumberOfDisscanseMaxScanRattimebasedivscansLengthsweep /*)/(*)(sec/)(=
The Max scan rate is set on 24000 scans/sec determined by the USB-6009 and the Number of
div/sweep is set on 20 because a buffer of 2 screens (= 20 divisions) is needed to have enough
samples after the trigger. So the Sweep Length can now be calculated by multiplying these 3
values with two Multiply elements.

To calculate the “Pretrigger scans” (=amount of scans before the trigger), the following
formula is used:
Pretrigger Scans = reference position (in percent of the screen) * sweeplength/2
The Sweep length needs to be divided by 2 be because the amount of Pretrigger scans is for 1
screen. This can be calculated with one Multiply and one Divide element.

2.3.2.3 The Signal Input.vi

Figure 11: Signal Input vi

In Figure 11 there is a picture of the Signal Input.vi in LabVIEW. It needs the following
inputs: the sweep length, the Max. scan rate (scans/s), the maximum and the minimum value
(calculated in the Vertical Range.vi) and the Hardware id. The hardware id is on most
computers the default id (=Dev1/ai0,Dev1/) for the USB-6009. Generally this is the
appropriate setting and it only needs to be changed in rare cases.

The 7 numbered blocks in Figure 11 acquire the data out of the USB-6009
A short overview of those blocks:

1. An empty task is created.
2. An analog input voltage channel is created. The hardware id is selected, and the gain

in the programmable gain amplifier is set trough the maximum and minimum value.
Also the measuring mode is set (differential).

3. Here the scan rate is set on the highest possible scan rate. The sample mode is defined
to be continuous.

4. The start VI: The data acquisition starts here.
5. The “number of samples per channel” is set as the sweep length (amount of scans) and

the data output returns the Scanned voltage data record.
6. Stop the analog input task.
7. Call the clear Task VI to clear the Task.

The output of this VI now gives the Pretrigger scans, the Sweep length (in amount of scans),
one array with two rows of Sampled Voltage Data and eventually error messages when an
error occurred.

2.3.2.4 The ACDCGNDSelector.vi
This vi needs the following inputs: the AC/DC/gnd setting of channel A and B, the sweep
length (Scans) and the Horizontally adjusted voltage data (see Figure 12).

Figure 12: The ACDCGNDSelector.vi

First of all, the 2-dimensional array is split into two 1-dimentional arrays to do the appropriate
calculations according to the vertical settings for each channel. Each of the resulting arrays
contains the data of one channel. This splitting is done with the following function: Index
Array. This element needs a n-dimension array (the horizontally adjusted voltage data) and
one or more indexes as input and it returns the element or sub-array at the given index (0 and
1).
After this, there is taken care of the AC/DC/gnd calculation with an AC-DC-GND.vi for each
channel. This vi calculates the “Horizontally adjusted voltage data” and a “GND Mode”
boolean for each channel, according to the AC/DC/gnd setting.
The following inputs are needed: the Sampled adjusted voltage data of the appropriate
channel, the AC/DC/gnd setting of that channel and the Sweep Length (Scans)
There has to be a distinction between the 3 cases: In LabVIEW this is done with a case
structure. In such a case structure, the value wired to the selector terminal (at the selection
mark sign) determines which case to execute:

- In case of AC (Figure 13):
In this case, the sum of data values out of the array is made and this has to be divided by the
size of the array to get the average. For each of these 3 calculations, there exists a function in
LabVIEW: Add Array Elements, Array size and Divide.
The distraction of the original values with this average will give the Horizontally adjusted
voltage data as output. This is done with a distract element which distracts the calculated
value of all elements of the array.
Also, the GND mode boolean is set on false. This boolean will be used later on in the
program.

Figure 13: case AC

- In case of DC (Figure 14):
In this case, the original data has to be shown on the screen, so the Sampled voltage data is
directly connected to the Horizontally adjusted voltage data output. The GND mode boolean
is again set on false

Figure 14: case DC

- In case of gnd (Figure 15):
In case of gnd mode, all the data values in the array must become zero. The Initialize Array
function makes a brand new array full of zeros. This function needs an element and a size as
input and creates an n-dimensional array in which every element is initialized to the value of
that element. The size of the new array is determined by the Sweep Length calculated in the
Horizontal Range vi. Of course the GND boolean is now set on true.

Figure 15: case GND

2.4 Trace extraction
This section mainly consists out of calculations and checks that have something to do with the
triggering. A theoretical background of the Trigger section is given before explaining the
implementation in LabVIEW:

2.4.1 Theoretical Background
The trigger section is used to control the starting point of the sweep on the display. Always
triggering on the same point is necessary to become an apparent fixed image of the input
signal.

The trigger level control makes it possible to select the voltage at which the waveform starts,
the slope control selects whether the waveform starts at a positive or at a negative slope.
When the input waveform gives a slope and level match at the reference position, as set on the
trigger and horizontal control panel, a pulse is sent to the horizontal circuit section to start the
sweep. Periodic input signals will start the sweeps at the same point, which will give a
stationary signal on the output screen.

There are three different trigger modes: Normal triggering, auto triggering and auto-level
triggering.

Normal triggering is the most basic of all triggering methods. First the trigger level must be
selected. If the trigger conditions are not reached, there wont be a sweep.
Figure 16 and Figure 17 can clarify this. In Figure 16 the input signal and two trigger levels
are shown. One of the trigger levels is clearly not crossed by the input signal and the other one
crosses it periodically. The results of the trigger level can be seen in Figure 17. For better
viewing; both trigger signals are on a different base level. The bad trigger level doesn't cross
the signal and will result in a non changing trigger signal. It provides no trigger pulses and
thus no sweep. The good trigger level does cross the input signal. In Figure 16 there is
triggered on the negative slope: a trigger pulse will be generated on the trigger signal, every
time the input signal is on a negative slope and crosses the trigger level.

Figure 16: examples of trigger levels in normal triggering

Figure 17: normal triggering results

Auto-level triggering is very similar to normal triggering. In this trigger method, the
oscilloscope will first fire a random sweep, measuring the maximum and minimum level of
the input signal. The trigger level will then be put in the middle between those boundaries,
resulting in a guaranteed trigger if the signal is recurrent.
The difference between auto-level and normal triggering thus lies in the fact that the auto-
level trigger takes control over the trigger level selection.

When using auto triggering, the trigger circuits in the scope waits for the input signal to reach
the trigger conditions. If the input signal does not reach the trigger point within a pre-
specified time interval (timeout), the scope will automatically generate the trigger pulse
causing a sweep to start.

2.4.2 In LabVIEW (Extract Traces.vi)
As shown in Figure 4 , this sections only contains the “Extract Traces.vi” (Figure 18).

Figure 18: Extract Traces.vi

This VI starts with separating the Sampled voltage data of channel A and B from each other
with an “Index Array” element. The source boolean which comes out of the Trigger cluster
must select which channel must be used for triggering. The boolean is true when channel A is
the trigger channel and false when channel B is the trigger channel. The selection of the
correct trigger channel is made with a “Select” element.

The actual sweep length in traces is the half of the sweep length in scans that is given as
input. The difference is that the actual sweep length is for one screen while the sweep length
in scans is for 2 screens.

The trigger subVI calculates the trigger position and returns a boolean that determines
whether a trigger is found or not. This vi contains one big case structure, controlled by the
way of triggering: normal (case 0), auto (case 1) or autolevel (case 2) triggering. In every case
there is a Find Trigger.vi (Figure 19) used in a while loop to find a usable trigger. This vi
works as follows:

Figure 19: Find Trigger.vi

A way to search the trigger point is by checking if the trigger level is passed between two
successive values: the “Iterations of the while loop” input and a decrement of this input
selects 2 such successive values out the “Sampled voltage data” by using an “index array”
element. Those two values (sample A and B in Figure 20) are compared with the trigger level
and if one of them is higher and the other one is lower than the trigger level, the trigger level
is passed. This is implemented with 2 comparing elements (an “Greater Or Equal” and an
“Equal” element) of which the outputs are connected to an “Exclusive Or” element.
If, for example, both results from the comparison are “TRUE”, then both signals are below
the trigger level, and the XOR port will return a “FALSE”.

Figure 20: Checking for trigger

Next thing to do is check for the correct slope. All that has to be done for this is comparing
the current value with a value of two places before. This last value is also returned by the

“Index Array” by giving as index input the “Iteration of the while loop” minus two (= 2 times
a decrement). There is a correct slope when this comparison is in order to the slope boolean:
so there is a combination of a “Less?” element and a “Equal?” element needed.
When the trigger level has been passed and the slope is correct, a trigger has been found. The
next step is checking if the trigger is in range. To do this the amount of pretrigger scans are
subtracted from the previously found trigger location: this gives the start location from the
scans that will be used to fill up the screen. After that, two comparison elements are used to
check whether there are enough samples available to fill up the whole screen.

If the result of these 4 checks are true (the and port of the 4 result becomes true) a usable
trigger has been found. The position of this trigger is passed on, together with a “TRUE”
Boolean to indicate that a correct trigger has been found.

After understanding this subVI, the 3 cases can be explained:
Normal triggering (case 0)
In this case (see Figure 21), a while loop is used to try to find a successive trigger with the
Find trigger.vi. This loop will continue until a successive trigger is found or until the amount
of iterations gets bigger then the amount of scans (sweep length) which means there is a
timeout. This is implemented with a “Greater or Equal?” element between the Sweep length
and the amount of iteration which leads to a “Time out” output. This output in combination
with the “Trigger Found” output of the Find Trigger.vi are connected to an OR-port which
returns the boolean of the while loop condition. When the condition to stop the loop is
reached, the “Trigger Found” and the “Trigger Position” outputs must be changed to the
outputs of the Find Trigger.vi and otherwise they stay the same as in the previous iteration.
This is implemented with 2 “Select” elements. The “Trigger Level” can directly be connected
to its input because when there is no trigger found, this level doesn’t matter.

Figure 21: Normal triggering

Auto triggering (case 1)
The only difference with this trigger mode is that it triggers after a certain amount of
iterations instead of stopping the search for a trigger when the number of iterations gets bigger
then the sweep length (see Figure 22). When no trigger is found after 52% of the sweep length
the while loop must stop and there must be a triggering on the last used trigger position: this
means that the “Trigger Position” changes to the output of the Find Trigger.vi which is done
with a “Select” element. 52% of the sweep length is used as limit because then there are still
enough scans left in the buffer. This in consideration with a minimum Reference position of

10%. Before this auto triggering takes place, normal trigger conditions will be searched using
the same method as in normal triggering.
After the while loop has ended the level from the trigger position is fetched from the
“Sampled voltage data” with an “index array” element. In case of a timeout this new trigger
level will be used as trigger level, in case of a normal trigger the preset trigger level will be
used. This selection is made with a “Select” element. Because there will always be a
triggering in this mode, the “Trigger Found” output can be set on true.

Figure 22: auto trigger

Autolevel triggering (case 2)
Autolevel triggering starts by calculating a new trigger level (see Figure 23). The “array max
& min” function gives the maximal and minimal value of the data array from the selected
channel. The sum of those two values divided by two gives the new trigger level. The actual
triggering goes in the same way as the normal triggering. The only difference is that there will
definitely be a trigger in this mode, so no “time out” precautions are necessary.

Figure 23: Autolevel Triggering

If a trigger has been found (the “Trigger Found” boolean out of the Trigger.vi is true), the new
data-arrays can be created with a subset array starting from the trigger position (Figure 24).
The size of these new arrays is determined by the Sweep length (traces for one screen). Then
both arrays are bundled and sent to the “map to graph” subVI.

Figure 24: New Data-Array (trigger)

If there is no trigger found, all data in the new arrays will be set to “zero” (Figure 25). This
array will also be used in case of ground mode coupling to present the ground-line on screen.

Figure 25: New Data-Array (no trigger)
Those two cases are implemented with a case structure.

At the and of the Extract Traces.vi, the “Cursor Trigger Level” output is determined: it is a
cluster of the trigger level with the boolean that determines the source of the trigger (in case
of true, channel A is the source of the trigger and in the other case channel B). This cluster is
needed in the Map to Graph.vi.

2.5 Display of the traces
As last part there is the “Display of the traces” section that needs to take care of the output.
First of all this means that the vertical adjustments have to take place so the plots appear on
the screen in the right proportions and on the right position. This is done in the Map To
Graph.vi which will give the traces to put on the Waveform Graph and the Trigger Level as
output. Secondly, a Waveform Graph block is used to configure the Waveform Graph:

2.5.1 The Map to Graph.vi
After splitting up the voltage data, both channels arrays are formatted in the appropriate way.
The following formula is used to do this: “ positiongaininput +∗ ”. Here the input is the array
of data values. In LabVIEW this formula can be created using a Multiply and an Add element
(see Figure 26). After this, the data values of both the channels are collected again with a
‘build array’ component. The “traces” output is ready to be submitted for the waveform
graph.

The trigger section of this vi starts by selecting the correct gain and position values to adjust
the trigger level, so it can be positioned correctly on the screen. This is done with a case
structure: if the boolean of the cursor trigger is true, the values of channel A must be taken
and in case of false the values of channel B. After this, the trigger level also is vertically
adjusted, using the same formula as before. This adjusted trigger level will be displayed on
the screen later on.

Figure 26: Map to Graph.vi

2.5.2 Configuration of the Waveform Graph
Completely on the right (Figure 4) there is a column shown, called Waveform Graph property
node. This block places the different cursors on the graphical output: the trigger level, the
position of channel A and B, and the reference position. The ActCrsr is used to get and set the
active cursors and set properties and methods on that cursor. The Cursor.PosX/Y is the X/Y
coordinate of the cursor: The Y coordinate of the trigger level cursor is determined in the Map
to Graph.vi, the Y-coordinates for the channel A and B cursors come out of the “Vertical A”

and “Vertical B” clusters, and the X-coordinate of the reference position is set on the amount
of pretrigger scans as returned by the Horizontal Range.vi.
Also the plots are controlled in this property note: ActPlot shows which plot is active. In this
case there are 2 plots: one plot for each channel. The Plot.visible? makes the plot visible when
it gets a true boolean as input. A plot must only be visible when the ON/OFF button is in
position ON and if the trigger is found or the channel is in GND mode. This is determined
with an OR in combination with an AND element.

Every cursor and every plot also gets a number assigned that is used as index for that
cursor/plot.

The Xscale.Maximum is the maximum value of Scale which is determined by the Sweep
Length and the XScale.Increment is the increment value of the scale which is 1/10th of the
Maximum value of Scale to become 10 divisions.

The “Hide Grid” boolean determines whether the grid has to be visible or not: in case of true
the X- and Ycolor are set in a color (26112 and 13056 stands for 2 kinds of green), in the
other case they are set black (0 stands for black) which is implemented with a “Select”
element. A cluster of two colors is needed as input to set the X/Y color: The first one is for the
major color and the second one for the minor color.

2.6 Performance
The performance of the application is mainly dependant on the USB-6009. This device has a
rather small maximum scan rate. The performance of the application is thus satisfactory. On
relatively slow computer hardware (Pentium II 400 MHz, 256 MB SDRAM, 100MHz FSB)
the oscilloscope reacts prompt. Only when changing the input signals very quickly the
oscilloscope needs a little bit more time to recalculate the signal. This is due to the slow USB
protocol and because of the needed calculations. The response time is generally quite short
and is most of the times negligible.

There is only one performance problem: an error -200361 dialog (Figure 27) sometimes pops
up in the following cases:

• when there are a lot of programs in the computer's memory
• by using a lot of debug features
• or very rare, while only working with the oscilloscope

Figure 27: Error -200361

National Instruments website states the following about the problem:
Solution: The behavior you are experiencing is a result of a combination of factors.

1. The 6008/9 has a relatively small onboard FIFO.
2. NI-DAQmx Base is a driver written at the user level.
3. Communication with the device is message based over USB which is inherently slower

than equivalent communication over PCI.
Since NI-DAQmx Base is written in LabVIEW, it has user level priority and CPU allocation.
If the operating system is busy with other user level operations, NI-DAQmx Base can get
starved of resources so that it cannot request data from the USB device fast enough. Since the
USB-6008/9 has a relatively small onboard FIFO, it does not take long for the FIFO to
overflow if you are acquiring at a high rate. Unfortunately, the operations such as opening
other programs, minimizing/maximizing windows are very CPU intensive, especially with
Windows OS. Therefore, when you perform these operations, NI-DAQmx Base cannot retrieve
data from the device, the FIFO overflows, and you get the -200361 error.

Investigation about the USB protocol problem is easy: The program is tested over USB1.1 (up
to 12mbyte/s) and USB2.0 (up to 480 mbyte/s). There was no difference in performance. The
conclusion is thus that the error always comes from a combination of the relatively small
onboard FIFO and the driver being written at user level. Testing on several computers
confirmed this. In the end it seems that this error is impossible to solve in the program code;
it's one of the limitations of the USB6009 device. One possible solution is to filter out the
error message because it's actually only a warning and the program continues working after
pushing the ok button.

3 A more advanced oscilloscope using a high speed
digitizer

3.1 Introduction
This section describes a more advanced scope which uses a high speed digitizer, the NI5112,
to acquire the data, instead of getting data from a simple DAQ-board. A high speed digitizer
is a piece of equipment that reads in a signal and transforms it into digital data. Other
functions that distinguish the digitizer from a normal DAQ board, are that it can trigger and
perform a variety of measurements on the acquired signal.

3.1.1 Advanced Oscilloscope
The advanced oscilloscope distinguishes itself from the basic oscilloscope in this way that it
has a bigger variety of functions. Not only is it capable of everything the basic scope can do,
it also can perform measurements on the signal directly in the NI5112.
Another difference is that you have the choice for the trigger: it can be done in the hardware
of the NI5112 or it can be done by software, the same way as in the basic oscilloscope.

3.1.2 Remote Lab
A remote lab or distant lab is a laboratory that emulates a traditional laboratory. The hardware
and electrical components are wired in a circuit by the use of a robot. This happens on the
server side. The robot is controlled by a client somewhere else. The internet is used as the
communication infrastructure between the client and the server applications.

A remote lab has some special requirements:
All settings and data have to be sent from the client to the server flawlessly. In order to
achieve this goal, the data has to be sent in a predefined way. Therefore strings are used for
the communication protocol.
The client sends one string which contains all settings to configure the oscilloscope in the
appropriate way. The server responds with a string containing all actually used settings, the
received measurements and signal data. The protocol describing these string can be found in
Appendix C/D.

Because these special needs of the remote lab, the advanced oscilloscope is split up in two
main vi's: The OscSetup and the OscRead.vi. The OscSetup.vi handles the first string, created
by the remote front-panel. In this way the settings from the client are passed to the
oscilloscope. The second string returns the actual measurements (based on the settings out of
the first string) back to the client: this is done in the OscRead.vi. This vi is executed by a
second string coming from the client. This string is no more than a “send data” request. A
better description is provided later on in the ‘Notes for client module implementation’.

The oscilloscope also needs the resource name and an error in as input. Trough the whole
program the error in will always be passed on to the next subvi and will be updated when an
error occurs. The final outputs are an error out and a response string. The error out contains all
the occurred errors if any and the response string will contain the results of the performed
measurements.

3.1.3 Data acquisition using the NI-5112
The acquisition
The NI 5112 acquisition system controls the way samples are acquired and stored. Two
sampling methods are available: real-time sampling and random interleaved sampling (RIS).
Real-time sampling allows you to acquire data at a rate of 100MS/n, where n is a number
from 1 to 100e+6. In RIS mode, you can sample at rates of 100MS/s*n, where n is a number
from 2 to 25

During the acquisition, samples are stored in a circular buffer that is continually rewritten
until a trigger is received. After the trigger is received, the NI 5112 continues to acquire
posttrigger samples when a posttrigger sample count is specified. The acquired samples are
placed into onboard memory. The number of posttrigger or pretrigger samples is limited only
by the amount of onboard memory.

The NI 5112 PGA offers a variable input range per channel, from ±0.025 V to ±25 V. The
ADC is only 8 bits. To get accurate measurements it is very important to set the PGA to the
preferred range.

The triggering
The analog trigger on the NI 5112 operates by comparing the current analog input to an
onboard threshold voltage. This threshold voltage, the trigger value, can be set to any voltage
within the current input range. A hysteresis value associated with the trigger is used to create
a trigger window the signal must pass through before the trigger is accepted. (see Figure 28)

Figure 28: Trigger with hysteresis

The NI5112 features
The supported features can be found in the table in Appendix B.
One thing that has to be noticed is that the NI 5112 only support AC and DC coupling so the
GND coupling must be implemented in software.

3.2 Digitizer setup (the OscSetup.vi)
The first two things that happen in this vi is the initialization of the oscilloscope driver in the
niScope Initialize.vi and splitting up the Oscilloscope Setting Information String (=Data In)
with the Strip_String.vi to become the settings. The boolean of true that is one of the inputs of
the niScope Initialize.vi is meant to reset the instrument during the initialization procedure.

The instrument handle output identifies a particular instrument session so it needs to be
passed on to every subvi. The Strip_String.vi will give the settings, a boolean and the
remaining string as output. The boolean determines whether it is Autoscale mode or Normal
mode and a case structure will send the necessary inputs to the correct vi (so to the
Autoscale.vi or to the NormalSettings.vi) to do the setup according to the mode. After this, the
Oscilloscope Driver can be initiated with the niScope initiate Acquisition.vi which will return
an error out and the instrument handle which must be bundled with the settings and remaining
string to become the output cluster that is needed for the Data Fetch. This all is shown in
Figure 29.

Figure 29: OscSetup.vi (autoscale)

3.2.1 Strip_string.vi
The string that enters this vi contains the settings including a boolean to distinguish the
Normal mode from the Autoscale mode. The first thing that has to be done is to strip of this
boolean with a Scan from String element. The different settings can now be determined out of
the remaining string. These settings includes the horizontal configuration, the channel (2
times), the trigger and the measurements (3 times) -settings.

The horizontal configuration settings
This is the first part that has to be scanned out of the remaining string and it contains the
minimum sample rate (a double), the reference position (a double) and the record length (an
integer). The stripping of these 3 values can, again, be done with a Scan From String element.
By bundling these three values, the horizontal configuration setting is determined.

The channel settings (two times)
These settings include a boolean that defines whether the channel is enabled or not. If the
channel is enabled, it also includes the vertical coupling (Enum), the vertical range (double),
the vertical offset (double) and the probe attenuation (double) settings. So first the boolean
needs to be scanned out. After this, a case structure will scan out the other 4 values in case of
a true boolean. In case of a false boolean, the 4 other values are set to a fixed value. These 5
values are bundled together to become the settings of one channel.

The trigger settings
These settings include the source (Enum), the slope (Enum), the coupling (Enum), the level
(double), the holdoff (double), the delay (double), the mode (double) and the timeout (double)
–settings. The scanning of these values is analogue as in the previous settings.

The measurement settings (three times)
These include the channel (Enum) and the selection (Enum) settings.

All this results in the following outputs:
-Autoscale/Normal
-Remaining String
-Settings: Horizontal Conf.: Min. Sample rate
(a cluster of) Reference position
 Record Length
 Channel A: Enable
 Vertical coupling
 Vertical range
 Vertical offset
 Probe attenuation
 Channel B: Enable
 Vertical coupling
 Vertical range
 Vertical offset
 Probe attenuation
 Trigger: Source
 Slope
 Coupling
 Level
 Holdoff
 Delay
 Mode
 Timeout
 Measurements: Measurement 1: Channel
 Selection
 Measurement 2: Channel
 Selection
 Measurement 3: Channel
 Selection

The result of all this is shown in Figure 30.

Figure 30: The Strip String vi

3.2.2 In case of Autoscale mode: niScope Auto Setup.vi
If autoscale is used, the oscilloscope makes all settings according to the signal. This function
is created by National Instruments: the niScope Auto Setup.vi. This means that in this case the
settings doesn’t need to be changed and the adjusted instrument handle and the error out are
given by the niScope Auto Setup.vi: Figure 31.

Figure 31: Autoscale Mode

3.2.3 In case of Normal mode: NormalSettings.vi
The NormalSettings.vi will return the adjusted instrument handle out and the adjusted trigger
level started from the instrument handle in (out of the niScope Initialize.vi) and the Settings
(out of the Strip_String.vi). A bundle by name element will replace the trigger level in the
cluster of settings with the adjusted trigger level in auto-level triggering mode (see Figure 32).
This is only for later developing purposes because the actual used trigger level is returned by
the driver (see later).

Figure 32: Normal Mode

The NormalSettings.vi contains four parts that are connected behind each other by passing on
the errors and the instrument handle: Figure 33.
In the first part the “niScope Configure Acquisition.vi” is used to set the scope in Normal
acquisition mode. In the second part, the “niScope Configure Horizontal Timing.vi” takes
care of the configuration of the horizontal settings. This vi needs except for the instrument
handle and the error input also the minimum sample rate, the Reference position and the
Record length as input: unbundling the “Horizontal Conf. input” gives these values.
The last two parts consists out of the “Vertical settings.vi” and the Trigger.vi.

Figure 33: The Normal.vi

In the Vertical settings subVI (see Figure 34), the Channel A and Channel B settings are used
as input. The “Vertical range” outputs are created for each channel out of the channel A en B
setting clusters. All the settings of Channel A and Channel B each go to a “niScope Configure
Vertical.vi”. When a channel is GND coupled, it’s necessary to change this coupling mode
because it is not supported by the NI 5112. Later on in the program the GND coupling will be
implemented in software. In this case, a change from GND to DC-coupling is used: this is
done with a case structure in the checkforground.vi that can be seen in Figure 35.
Except for these channel settings, the “niScope Configure Vertical.vi” also needs the
instrument handle, the error in and the channel name as input (0 for channel A and 1 for
channel B). Coupling those 2 “niScope Configure Vertical.vi’s” behind each other will give
the adjusted instrument handle and the error out as output. Both channels are always enabled
so its possible to trigger on a disabled channel and to perform measurements between both
channels: for example to determine the phase delay.

Figure 34: The vertical Settings.vi

Figure 35: The checkforground.vi

The Trigger subVI needs the Trigger settings and the Vertical range of Channel A and B as
input. First the appropriate trigger source is selected. A distinction is made between triggering
on channel ½, Immediate triggering and external triggering by using a case structure.
In case of Immediate triggering
When an acquisition is initiated, the digitizer waits for the start trigger. In this case the
digitizer triggers immediately when the acquisition is started. This setting is done in the
“niScope Configure Trigger Immediate.vi”. This vi only needs the instrument handle and the
error in as input. With immediate triggering the trigger level is unused so it is set on a
constant to avoid errors: Figure 36.

Figure 36: Immediate triggering

In case of External triggering
In this case the triggering is configured the same way as is the case of immediate triggering
because external triggering is not necessary in a remotely operated laboratory. Thereby it is
not implemented in the current version of this program.

In case of Channel 1 or Channel 2 as trigger source
Because all of the niScope vi’s need a string of the channels List as input instead of a double,
the source of the trigger is first converted with a Number to Decimal element. Depending on
the trigger mode (Auto/Normal or Autolevel), the trigger level is determined in a case
structure:
-In case of Autolevel mode (Figure 37):

Figure 37: Autolevel mode

First of all a niScope Configure Trigger Immediate.vi is used so there will be an immediate
triggering. Secondly the niScope Initiate Acquisition.vi makes the oscilloscope leave his idle
state and initiates a waveform acquisition. The Check Status.vi (see Figure 38) executes a
while loop until the acquisition status is equal to 1 which means the driver is now completely
ready to do measurements. This happens in a No error case structure because otherwise the
program gets stuck because the driver never gets ready as the oscilloscope is not configured
properly.

Figure 38: Check Status.vi

After this, there are two niScope Fetch Measurements.vi’s used to calculate the trigger level:
The scalar measurement of the first vi is equal to 6 which stand for Voltage Max so this vi
will give the maximum voltage as output. The second vi will search for the minimum voltage
(scalar measurement = 7). The trigger level is now the average of the minimum and the
maximum voltage (the summation divided by 2). At last the niScope Abort.vi aborts the
acquisition and makes the program exit the measuring mode so the oscilloscope settings can
be altered again.

-In case of Auto or Normal trigger mode (Figure 39):
In this case the trigger level stays the same as in the trigger settings.

Figure 39: Auto or Normal trigger mode

To become the final trigger level, there needs to be a check whether this (calculated) trigger
level is within the Vertical range of the channel of the trigger source. If the trigger level is out
of this range, a fatal error will occur. Therefore the following steps are made: the trigger
source is checked and the vertical range of that channel is taken: this is done with an “Equal?”
and a select element. When half of this Vertical range (by using a dividing element) is higher
then the trigger level, the trigger level is out of range and the final trigger level becomes the
maximum possible trigger level for this vertical range. If the trigger level is in range, the
correct level is used. This is done with a comparing and a select element.
After this, the niScope Configure Trigger Edge.vi configures the driver for edge triggering
with the appropriate settings.

3.3 Data fetch (OscRead.vi)
The actual acquisitions starts in this vi. The DAQ will fetch the data and convert it into strings
to send back to the client. All the settings from the first string are passed trough from the
OscSetup.vi. As the driver is already configured in the OscSetup.vi, the only thing that needs
to be done here is performing the measurements, error handling and building the response
string.

Figure 40: The OscRead.vi

The Channel list, consisting out of 1 constant string (0,1), is used to enable both channels for
the measurements. The reasons for this are already mentioned before. Some settings coming
from the OscSetup.vi trough the output cluster are clustered and are passed to the appropriate
vi’s. Like in the OscSetup.vi the instrument handle and the errors are always passed trough
the different blocks in the block diagram.

3.3.1 niScope Multi Fetch Binary 8.vi
The scaled voltage data is fetched here in consideration of all settings made before. This vi
returns the ”wfm” and the “wfm info” as output. The waveform (wfm) is an array of clusters,
each containing the “initial x value”, the “x increment” and a waveform array per channel.
The waveform info (wfm info) is an array of clusters which contains all the timing and scaling
information for each waveform (actualSamples, absoluteInitialX, relativeInitialX, xIncrement,
gain and offset).

3.3.2 CheckError.vi
The task of this vi is to check whether the Multi Fetch Binary 8.vi was able to perform his
task correctly. The vi checks wether the “BFFA2003”-error occurred, which is the
“niscope_error_max_time_exceeded” error. It indicates a trigger timeout.

First step is to unbundle the error cluster and check if there actually is an error (this is
determined with the boolean out of the cluster). The two cases are split up with a case
structure:
In case of false:
If there is no error, the “error in” just gets connected to the “error out” and the “Time out”
remains false.

In case of true:
If there is an error, there are two possibilities: the error is equal to the “BFFA2003” error or it
is not. This is checked with an Equal element so the two cases can again be split up with a
case structure. The result of the Equal element also determines the Time out boolean.
In case of false: the error is not equal to the “BFFA2003” error
In this case there is another error which must be connected to the “error out”.
In case of true: the error is the “BFFA2003” error
Because the Time out became already true, the error gets reset.

Figure 41: Check Error subvi

3.3.3 The Check Trigger vi

Figure 42: the Check Trigger.vi (case true, Auto Mode)

Depending whether the timeout occurred in the “Multi Fetch Binary 8.vi”, an appropriate case
is selected.

In case of false the time out didn’t occur so the data can be passed on directly to the Scan to
String.vi.

In case of true the Timeout occurred. The triggering mode is changed into immediate
triggering. First the acquisition needs to be aborted (niScope Abort.vi) then the oscilloscope is
configured for immediate triggering (niScope Configure Trigger Immediate.vi) and finally a
waveform acquisition can be initiated again (niScope Initiate Aqcuisition.vi): see Figure 42.
Again the Check Status.vi is used to check whether the oscilloscope is ready to perform
measurements (see earlier).
After this a distinction between Normal/Auto Level and Auto is made:
In case of Auto Mode
In this case the oscilloscope has to trigger immediately so the niScope Multi Fetch Binary.vi
can just start to Fetch data. This vi will return the adjusted “wfm info”, “wfm”, instrument
handle and error out as output.
In case of Normal/Auto Level
In this case, it was not possible to trigger with the configured settings. No data is fetched and
in the response string there won’t be any waveform data included. Normally in Autolevel,
there won’t be a timeout but a case for this is mandatory in LabVIEW.

3.3.4 The measurements vi
The task of this vi is to perform measurements on the data channels.

Figure 43: measurements.vi

The measurements cluster contains three pairs of values (one pair per measurement)
determines which measurements are requested on which channel.

First the instrument handle and the error in are given as input to a Property Node element
which gets and/or sets properties of the reference. In this case channel B is used as reference
to make for example phase measurements on channel A and vice versa. This element will
return the adjusted instrument handle and the errors.
For every measurement that needs to be executed, a measurement request and a channel (both
from the “measurements cluster” input) must be linked to the “Execute Measurement” subVI.

Figure 44: Execute Measurements subVI

In case the Error In contains an error, the instrument handle and error signal will be directly
connected to the output. The result will be set to “0,0”. If there’s no error, the first step in the
“executemeasurements” subVI is checking if the channel on which the measurement must be
done is enabled. This is done with a case structure in the “Check_Channel” subVI: it will
return a true boolean if the requested channel is enabled. A Measurement Selection of 4000
means that no measurement is requested. So only when the channel is enabled and the
Measurement Selection is not equal to 4000, a measurement will be performed. This check is
done with an Equal, a NOT and an AND logical port. The result of the AND-port is connected
to the selector terminal of a case structure:
In case of false: No need for measuring
The instrument handle in and the error in are directly connected to the instrument handle out
and the error out. The result must be set on 0,0 as specified in the protocol.

In case of true: Measuring is necessary
For doing the measurement, the niScope Fetch Measurement.vi is used. The channel needs to
be in a string form so a Number to Decimal String element is used to make the correct
conversion. The timeout is set on zero to tell the NI-scope to fetch whatever is currently
available.

The results of the three Execute Measurements can now be clustered together for submitting
them to the Scan to String.vi.

3.3.5 The scan to String vi

Figure 45: Scan to String vi

The purpose of this vi is to make a string according to the protocol (see

Appendix D). This string must contain the following values:
-Horizontal: the actual sample rate and the actual record length.
-Channel (2 times): the probe attenuation, the vertical range, the vertical offset, the gain and

the waveform (which is an array of bytes).
-Measurements (3 times)
-Trigger: the received boolean and the level.

The actually used horizontal values are fetched with the “niScope Sample Rate.vi” and the
“niScope Actual Record Length.vi”. If both channels are disabled, the actual record length is
set to zero. The NAND port behind the “channels cluster” takes care of that. After that they
are put into a string with a Format Into String element.
Now the vertical settings are added to the string. The probe attenuation and the vertical range
are fetched from the “niScope Query Vertical.vi”, the offset and gain from the “wfm info”.
The “Channel on/off” subVI (Figure 46) then checks if the channel is enabled. If this is the
case it will execute the “Array2string.vi” which will convert the data array into a string. If it is
disabled a new array (size equal to the actual record length) with only “zero” values will be
created instead of the actual data.

Figure 46: Channel ON/OFF vi

Figure 47: Array2String.vi

The array to string conversion is executed in a while loop. For every iteration until the actual
record length is reached, an element is fetched from the array and added to a string using a
format into string element. This string is passed on to the next iteration using a shift register.
Once the actual record length is reached the complete string can be sent to the output.
After adding this string the results (doubles) from the three measurements are added to the
string, followed by the information on the trigger which contains one Boolean (trigger found
or not) and one double containing the trigger level. This last value is fetched out of the
“niScope Query Trigger Edge.vi”.

3.3.6 The niScope Abort and the niScope Close vi
After making all the necessary measurement to create the needed Output string for this
“OscRead” vi, the acquisition needs to be aborted and the session needs to be closed to be
ready for a next cycle. This is done with the niScope Abort and the niScope Close.vi. The

“niScope Abort” vi gets the “instrument handle” and the “error in” inputs from the Scan to
string vi and the outputs of this “niScope Abort” vi are the inputs of the “niScope Close” vi.

3.4 Notes for client module implementation
As already stated before this oscilloscope is structured in two blocks. The reason for this is the
need to use the oscilloscope remotly controlled. The oscilloscope is completely operated by a
normal text string. The oscilloscope works with two setup strings and one response string.

A first string is used to configure the oscilloscope. This string executes the OSCsetup virtual
instrument. This VI calculates the needed values (for example the trigger level in autolevel
triggering mode) and passes them to the oscilloscope. This VI doesn't return anything to the
client.

The second step the client needs to do is asking the data by sending another string. This will
execute the OSCread VI. This VI will perform all the requested measurements and return the
available data in a response string to the client.

The client module should take care of sending the two strings not too fast after each other
because the OSCsetup needs time to execute. Also for some settings the client module has to
take care that their values are not going out of bounds as this will result in an error not
reported in the output string.

Another point the client should take care of is the enabling/disabling of channels. When both
channels are disabled, the oscilloscope won't return any data for any channel. However when
only one channel is disabled, the oscilloscope will send an array of zero's instead of that
channel's data. The client should recognize the on/off state in it's own control panel and take
care of this by itself.

For the appropriate string settings and response (the protocol) we refer to the Distance
Laboratory, Protocol Specification version 3.0 available at the Blekinge Institute of
Technology. The oscilloscope part of this is found in Appendix C and

Appendix D.

For the possible measurements and the boundaries that should be respected in the setup string;
we refer to the NI 5112 digitizer manual available at the website of National Instruments.

3.5 Test environment
To check the proper functioning of the OSCsetup and the OSCread a test environment has
been created. It replaces the user interface that will be used to control the more advanced
oscilloscope once it is implemented in the remote lab.
The test environment consists out of three sections: a “Setup section”, a “Read section”, and a
“Graphical output”. The purpose of the “Setup section” is to send all necessary parameters in
a string to the OSCsetup.vi. The “Read section” will transform the string received from the
OSCread back to separated and useful values. The “Graphical output” will give, much like a
real oscilloscope, a quick image of the acquired signal.
During the tests, the oscilloscop reads in data from a function generator with known settings.

3.5.1 Setup Section

The front panel of this part of the test environment looks like the control panel of a normal
oscilloscope (see Figure 48). In case of “autoscale” the OSCsetup will ignore all parameters
that you define here, so for testing purposes it should be placed in the “OFF” position. The
“remaining string” element is solely for testing purposes, all data in that controller should be
ignored and passed on by both the OSCsetup and the OSCread. The other controls will
provide parameters according to the “oscilloscope request protocol” (see

Appendix D).

Figure 48: Setup Front Panel

In the block diagram (Figure 49) all values from the input have to be inserted into the string
that will control the OSCsetup. The fist value to add by using a “format into string” element,
is the “autoscale Boolean”. The next value is the “Minimal Sample Rate” (MS/s) which is
calculated using the following formula: “record length” * 100 / “ms/div setting” . The “100”
in this formula comes from “1000” (milliseconds/second) divided by “10” (div/screen).Then
the other values from the “horizontal configuration” section are added to the string, followed
by the “ON/OFF” Boolean value for “channel 1”. If a channel is disabled, the OSCsetup
doesn’t expect the other values from the vertical setup for that channel, this can be done using
a case structure as seen in Figure 49. All remaining values are inserted into the string in the
correct order using “format into string” elements.
Once the final data is attached, the string is connected to the OSCsetup which was explained
earlier.

Figure 49: Setup Block Diagram

3.5.2 Read Section
In the read section the output from the OSCread is tested. This output is the string that will be
sent back to the client, once it is implemented in the remote lab. It contains the signal data,
measurement results and all necessary oscilloscope settings to provide a correct image on the
oscilloscope waveform graph. The order in which all elements from this string are presented,
is described in the “oscilloscope response protocol” (see

Appendix D).
While the string is being stripped, all parameters that are read will be presented on the “read
sections” front panel (Figure 50). The signal data will be used in the third section of the
testing environment.

Figure 50: Front Panel of the Read section

The stripping of the “response string” from the OSCread (see Figure 51) starts by detaching
the “horizontal setting” parameters: the “actual sample rate”, and the “actual record length”.
Then a subVI (Figure 52) will strip off all vertical settings for one of the channels, and all the
signal data, using a while loop with the amount of iterations linked to the “actual record
length” (default case in case structure). If however the “actual record length” equals “0”, no
data is included in the “response string” and an empty array will be created as seen in the “0-

case” (Figure 52). Once both channels have been stripped, two more “scan from string”
elements will be used to strip the remaining parameters from the “response string”.

Figure 51: Read Block Diagram

Figure 52: String to Data Array

3.5.3 Graphical Output

The front panel of this part has three waveform graphs that look like oscilloscope screens.
The first one (Figure 53) receives an array directly from the OSCread and shows the signal in
volts. The second one (Figure 55) gives the exact same output (signal in volts) but it’s input is
created from the data array that was extracted from the OSCread output string. The third one
(Figure 56) also uses the data extracted from the OSCread output string, but it shows the
signal the way it would appear on a scope with the same settings as those defined in the setup
section.

Figure 53: Graphic Output Screen 1

The screen in “Figure 53” gives the signal with a time based X-axis and a voltage based Y-
axis. The data presented is fetched from the “wfm” (wave form matrix) multiplied with the
“relativeInitialX” from the “wfm info” and increased with the “xIncrement”. These last values
are actually the gain and the offset for the signals.

Figure 54: Graphic Output Screen 1 Block diagram

Figure 55: Graphic Output Screen 2

The graph that can be seen in Figure 55, shows the signal in the same way as the graph from
Figure 53. The data presented are the values from the data arrays multiplied by the gain,
increased with the offset and then multiplied by the probe attenuation. The range of this graph
depends on the maximal vertical range, read in from both “Channel” clusters. (See Figure 57)

Figure 56: Graphic Output Screen 3

The waveform graph from Figure 56 presents the signal as it would be seen on a normal
oscilloscope with the same settings. The data presented is read from the arrays in the
“Channel 1” and “Channel 2” clusters divided by “32”, this way the minimal and maximal
values will be at the bottom and on the top of the screen. (See Figure 57)

Figure 57: Graphic Output Block Diagram

4 Conclusions
One of the purposes of this document is to give a better view on the different possibilities of
oscilloscopes. What is a better way to do this then to implement one?
Of course in the end the remote oscilloscope is developed which was the main goal of this
work. This oscilloscope will be used in the distant laboratory of the Blekinge Institute of
Technology (http://www.bth.se). Different kinds of schools around the world rent laboratory
time on the servers of BTH. (http://distanslabserver.its.bth.se). Hopefully this paper gives a
clear view on the working of the oscilloscope, the most important instrument in this
laboratory. In this way this paper should also provide a better understanding of LabVIEW for
the reader.

Developing the basic oscilloscope was an excellent way to learn how to work with LabVIEW.
The way this oscilloscope is implemented is the result of thoroughly testing and changing the
whole concept. For making it more transparent; the oscilloscope was restructured several
times. The code will also be submitted to National Instruments. It will be published on their
website (http://www.ni.com) as a good example on how to build instruments around the basic
acquisition boards they provide. The oscilloscope will also be used as an example in
LabVIEW lectures at BTH. Hopefully the final result is clear enough to be understandable for
every reader of this report as well as for all the interested customers of National Instruments.
At last there are still two existing problems in the basic oscilloscope. The first problem is the
buffer overrun error discussed in the performance paragraph. Also a possible solution is
suggested in that paragraph. The second problem is the maximum/minimum value calculation
in AC mode. It can happen that in AC mode the signal is out of range as the maximum and
minimum value are calculated only considering the volts/division setting, the position knob
and the maximum Y-scale for the waveform graph. For example: when the signal has a high
offset; this offset is removed by the AC-filter. Although it's possible that a signal that is
considered out of range in the maximum/minimum value calculation is displayed anyway.
When displaying the signal in DC mode, this is not a problem as the signal is out of the
window of the waveform graph. This problem was solved by using the maximum possible
range when one of the channels is in AC mode. The user of the oscilloscope should know that
it’s not possible to do such accurate measurements in AC mode and should work in DC mode
while using the position knobs. Of course this can be solved with a much more complex
algorithm; but this will make the oscilloscope too complex as the goal of this first part of the
project is to be basic and understandable. Generally speaking this is a limitation of the AC-
mode, and the user of the oscilloscope should be aware of this.

The second oscilloscope is only tested with the discussed testing environment. It's not yet
implemented in the existing distant laboratory. Therefore at the moment of writing, nothing is
known about the performance of this code. Anyway this code seems very promising and will
be added in the distant laboratory in the summer of 2005. When a client module is
implemented for this oscilloscope, the developer should take care of all advices mentioned in
the notes for client module implementation (see earlier).

In the end it's a pity there was no time left to develop the function generator for the remote
laboratory. This function generator still needs to get rebuild as the existing code contains
some errors and many blanks. Also the existing code of the function generator is not
structured in a good way. Of course the existing program works, so it's not a disaster that the
function generator has not been rebuild. This can be done in a later stage.

APPENDIXES

Appendix A: Introduction to LabVIEW
LabVIEW is a computer program designed by National Instruments
(http://www.ni.com/labview/). It’s a graphical programming language that uses icons instead
of lines of text to create applications. In contrast to text-based programming languages, where
instructions determine program execution, LabVIEW uses dataflow programming, where the
flow of data determines execution.

LabVIEW programs are called virtual instruments, or VIs, because their appearance and
operation imitate physical instruments. Every VI uses functions that manipulate their input
and display or move this information to other VIs or other computers. Any VI contains three
elements: a “front panel”, which serves as a user interface, a “block diagram”, which contains
the graphical code of the VI and an “icon and connector pane”. The icon and connector pane
identifies the interface to the VI so that you can connect the VI in the block diagram. A VI
within another VI is called a subVI. A subVI corresponds to an abject oriented subroutine in
text-based programming languages.

First there has to be build a user interface in LabVIEW by using a set of tools and objects,
which is called the front panel. Then you add code in the block diagram using graphical
representations of functions to control the front panel objects. In some ways, the block
diagram resembles a flowchart.

Appendix B: Features Supported by High-Speed Digitizers

 NI 5122 NI 5124 NI 5102 NI 5112 NI 5911 NI 5620 NI 5621

Timing
Maximum
Real-Time
Sample Rate

100 MS/s 200 MS/s 20 MS/s 100 MS/s 100 MS/s 64 MS/s 64 MS/s

Maximum
RIS Sample
Rate

2 GS/s 4 GS/s 1 GS/s 2.5 GS/s 1 GS/s — —

Time Stamps Absolute,
Relative

Absolute,
Relative

Relative Absolute,
Relative

Relative Absolute,
Relative

Absolute,
Relative

Memory
Memory per
Channel

8, 32,
256, or
512 MB

8, 32,
256, or
512 MB

663 KB 16 MB or
32 MB

4 MB or
16 MB

16 MS or
32 MS

(not using
DDC)

8 MS or
16 MS
(using
DDC)

32 MS
(not using

DDC)
16 MS
(using
DDC)

Input
Configuratio
n

Maximum
Input Range

±5 V (50
Ω), ±10 V
(1 MΩ)

±5 V (50
Ω), ±10 V
(1 MΩ)

±5 V ±25 V ±10 V ±1 V (±10
dBm)

±1 V (±10
dBm)

DC Offset Y Y N Y N N N

Input
Impedance

1 MΩ, 50
Ω

1 MΩ, 50
Ω

1 MΩ 1 MΩ, 50
Ω

1 MΩ 50 Ω 50 Ω

Input
Coupling

AC (1
MΩ

only),
DC, GND

AC (1
MΩ

only),
DC, GND

AC, DC AC, DC AC, DC AC only DC only

3 dB
Bandwidth

0 MHz to
100 MHz,
0 MHz to
20 MHz,
or 0 MHz

to 35
MHz

(analog
filter)

0 MHz to
150 MHz,
0 MHz to
20 MHz,
or 0 MHz

to 60
MHz

(analog
filter—
default)

0 MHz to
15 MHz

0 MHz to
100 MHz
or 0 MHz

to 20
MHz

(analog
filter)

0 MHz to
100 MHz

10 kHz to
36 MHz

0 MHz to
36 MHz

Triggering

Reference
(Stop) Trigger
Types

Immediat
e, Analog

Edge,
Digital
Edge,

Hysteresis
, Window,
Software,

Video

Immediat
e, Analog

Edge,
Digital
Edge,

Hysteresis
, Window,
Software,

Video

Immediat
e, Analog

Edge,
Digital
Edge,

Hysteresis
, Window

Immediat
e, Analog

Edge,
Digital
Edge,

Hysteresis
, Window,
Software

Immediat
e, Analog

Edge,
Digital
Edge,

Hysteresi
s,

Window,
Software

Immediat
e, Digital

Edge,
Software,
Analog
Edge,

Analog
Window,
Analog

Hysteresis

Immediat
e, Digital

Edge,
Software,
Analog
Edge,

Analog
Window,
Analog

Hysteresis

Reference
(Stop) Trigger
Sources

CH 0, CH
1, TRIG,
PFI<0..1>

,
RTSI<0..
7>, PXI

Star

CH 0, CH
1, TRIG,
PFI<0..1>

,
RTSI<0..
7>, PXI

Star

CH 0, CH
1, TRIG,
PFI<1..2>

,
RTSI<0..
6>, PXI

Star

CH 0, CH
1, TRIG,
PFI<1..2>

,
RTSI<0..
6>, PXI

Star

CH 0,
PFI<1..2

>,
RTSI<0..

6>

PFI 1,
RTSI<0..
6>, PXI

Star

PFI 1,
RTSI<0..
6>, PXI

Star

Trigger
Coupling
(External
TRIG Input)

AC, DC,
LF

Reject,
HF

Reject,
AC + HF

Reject

AC, DC,
LF

Reject,
HF

Reject,
AC + HF

Reject

AC, DC AC, DC — — —

Trigger
Coupling
(Analog Input
Channel)

Same as
Input

Channel,
HF

Reject,
LF Reject

Same as
Input

Channel,
HF

Reject,
LF Reject

Same as
Input

Channel

AC, DC Same as
Input

Channel

Same as
Input

Channel

Same as
Input

Channel

Trigger
Holdoff

From
trigger to
trigger

From
trigger to
trigger

From end
of

acquisitio
n to

trigger

From
trigger to
first point
of next
record

From
trigger to
first point

of next
record

— —

Trigger Delay Y Y N Y N N N

External
TRIG Input
Impedance

1 MΩ 1 MΩ 1 MΩ 1 MΩ, 50
Ω

— — —

Clocking
Reference
Clock Input
Sources

CLK IN,
PXI

Clock 10,
RTSI
Clock

(RTSI 7)

CLK IN,
PXI

Clock 10,
RTSI
Clock

(RTSI 7)

PFI<1..2>
, RTSI
Clock

(RTSI 7)

PFI<1..2>
, RTSI
Clock

(RTSI 7),
PXI

Clock 10

PFI<1..2
>, RTSI
Clock

(RTSI 7)

REF CLK
IN

(External)
, PXI

Clock 10

REF CLK
IN

(External)
, PXI

Clock 10

Reference 1 MHz to 1 MHz to 20 MHz 10 MHz 10 MHz 10 MHz 10 MHz

Clock
Frequency

20 MHz
(1 MHz

increment
s)

20 MHz
(1 MHz

increment
s)

Reference
Clock Outputs

CLK
OUT,

PFI<0..1>
,

RTSI<0..
6>

CLK
OUT,

PFI<0..1>
,

RTSI<0..
6>

PFI<1..2>
, RTSI
Clock

(RTSI 7)

PFI<1..2>
, RTSI
Clock

(RTSI 7)

PFI<1..2
>, RTSI
Clock

(RTSI 7)

— —

PCI Internal
Reference
Clock Outputs

CLK
OUT,
RTSI
Clock

(RTSI 7)

CLK
OUT,
RTSI
Clock

(RTSI 7)

PFI<1..2>
, RTSI
Clock

(RTSI 7)

PFI<1..2>
, RTSI
Clock

(RTSI 7)

PFI<1..2
>, RTSI
Clock

(RTSI 7)

— —

External
Sample Clock
Sources

CLK IN,
PXI Star

CLK IN,
PXI Star

PFI<1..2>
,

RTSI<0..
6>

— — — —

External
Sample Clock
Frequency

30 MHz
to 105
MHz

50 MHz
to 210
MHz

1 kHz to
20 MHz

— — — —

Sample Clock
Outputs

CLK
OUT,

PFI<0..1>
,

RTSI<0..
6>

CLK
OUT,

PFI<0..1>
,

RTSI<0..
6>

PFI<1..2>
,

RTSI<0..
6>

— — — —

Acquisition
Acquisition
Modes

Normal Normal Normal Normal Normal,
Flex Res

Normal,
DDC

Normal,
DDC

Multiple
Records

Y Y N Y Y Y Y

Continuous
Acquisition

Y Y N Y N Y Y

Synchronizat
ion Triggers

Arm
Reference
Trigger
Sources

PFI<0..1>
,

RTSI<0..
7>, PXI

Star

PFI<0..1>
,

RTSI<0..
7>, PXI

Star

— — — — —

Record
Advance
Trigger
Sources

PFI<0..1>
,

RTSI<0..
7>, PXI

PFI<0..1>
,

RTSI<0..
7>, PXI

— — — — —

Star Star

Record Arm
Trigger
Sources

— — — PFI<1..2>
,

RTSI<0..
6>

— — —

Start Trigger
(Acquisition
Arm) Sources

PFI<0..1>
,

RTSI<0..
7>, PXI

Star

PFI<0..1>
,

RTSI<0..
7>, PXI

Star

PFI<1..2>
,

RTSI<0..
6>, PXI

Star

— — — —

Reference
(Stop) Trigger
Outputs

PFI<0..1>
,

RTSI<0..
6>

PFI<0..1>
,

RTSI<0..
6>

PFI<1..2>
,

RTSI<0..
6>

PFI<1..2>
,

RTSI<0..
6>, PXI

Star (PXI
Slot 2
only)

PFI<1..2
>,

RTSI<0..
6>

PFI 1,
RTSI<0..

6>

PFI 1,
RTSI<0..

6>

End of Record
Outputs

PFI<0..1>
,

RTSI<0..
6>

PFI<0..1>
,

RTSI<0..
6>

— PFI<1..2>
,

RTSI<0..
6>

— — —

End of
Acquisition
Outputs

PFI<0..1>
,

RTSI<0..
6>

PFI<0..1>
,

RTSI<0..
6>

— — — — —

Start Trigger
Outputs

PFI<0..1>
,

RTSI<0..
6>

PFI<0..1>
,

RTSI<0..
6>

PFI<1..2>
,

RTSI<0..
6>

— — — —

Master–Slave
Trigger Delay
Correction

N N N Y N N N

Miscellaneou
s

Self-
Calibration

Y Y RIS
Timing
Only

Y Y N N

Probe
Compensation

PFI 1 (1
kHz)

PFI 1 (1
kHz)

PFI 1 (1
kHz)

PFI 1 (1
kHz)

PFI 1 (1
kHz)

— —

LabVIEW
Real-Time
Support

Y Y N N N N N

Appendix C: Oscilloscope Request
Each element should be separated by space.

<Function><...>

<Function> Enum
Setup 0
Fetch data 1

Fetch: <Nil>
Setup: <Autoscale><Horizontal Conf><Channel * 2>

<Trigger><Measurement * 3>

Setup does not return any data. To do that you have to send fetch data (as function). The fetch
request doesn’t have any other parameters. Setup must be done before fetch.

<Autoscale> : Boolean

If autoscale is used the oscilloscope makes all settings according to the signal. (This is a
function created by NI and we don’t have any opportunities to change anything).

<Horizontal Conf> : <Min. Sample Rate><Reference Position>

: <Record Length>

<Horizontal Conf.Min. Sample Rate> : Double

Specifies the sampling rate for the acquisition.
Units: Samples per second
Valid Values: The combination of sampling rate and minimum record length must allow
the digitizer to sample at a valid sampling rate for the acquisition type specified in niScope
Configure Acquisition and not require more memory than the onboard memory module
allows.
NI Default Value: 20 MS/s

<Horizontal Conf.Reference Position> : Double

Specifies the position of the Reference Event in the waveform record as a percentage of the
record. When the digitizer detects a trigger, it waits the length of time the Trigger Delay
property specifies. The event that occurs when the delay time elapses is the Reference
Event. The Reference Event is relative to the start of the record and is a percentage of the
record length. For example, the value 50.0 corresponds to the center of the waveform record
and 0.0 corresponds to the first element in the waveform record.
NI Default Value 50.0%

<Horizontal Conf.Record Length> : Integer

Passes the minimum number of points you need in the record for each channel; call niScope
Actual Record Length to obtain the actual record length used. Refer to Coercions of
Horizontal Parameters for more information about why the record length may be different
than what was specified.
Valid Values: Greater than 1; limited by available memory
NI Default Value 1000

<Channel> : <Enable>

<Channel.Enable> : Boolean
False: <Nil>
True: <Vertical coupling><Vertical range><Vertical offset>

<Probe attenuation>
If false no more channel parameters should be sent.

<Channel.Vertical coupling> Enum
AC 0
DC 1
GND 2

Specifies how the digitizer couples the input signal for the channel. When changing input
coupling, the input stage takes a finite amount of time to settle.

<Channel.Vertical range> : Double

Specifies the absolute value of the input range for a channel. The units are volts. For
example, to acquire a sine wave that spans between –5 and +5 V, set the Vertical Range
property to 10.0 V. If the signal is outside vertical range, the response will be clamped to the
measurement window, eg. +/- vertical range.

<Channel.Vertical offset> : Double

Specifies the location of the center of the range. The value is with respect to ground and is
in volts. For example, to acquire a sine wave that spans between 0.0 and 10.0 V, set this
property to 5.0 V.

<Channel.Probe attenuation> : Double

Specifies the probe attenuation for the input channel. For example, for a 10:1 probe, you
would set this property to 10.0.NI Default Value 1.0
Limits: Any positive real number. Typical values are 1, 10 and 100.

<Trigger> : <Source><Slope><Coupling><Level><Holdoff><Delay>
: <Trigger mode><Timeout>

<Trigger.Source> Enum
Channel 1 0
Channel 2 1
Immediate 2
External trigger 3

<Trigger.Slope> Enum
Positive 0
Negative 1

<Trigger.Coupling> Enum
AC 0
DC 1

<Trigger.Level> : Double

Specifies the voltage threshold for the trigger. The units are volts. The value you pass for
this parameter must meet the following conditions. Trigger Level <= Vertical Range/2 +
Vertical Offset and Trigger Level >= (-Vertical Range/2) + Vertical Offset

<Trigger.Holdoff> : Double

Specifies the length of time the digitizer waits after detecting a trigger before enabling the
trigger subsystem to detect another trigger. The units are seconds. This property affects
instrument operation only when the digitizer requires multiple acquisitions to build a
complete waveform.
NI Default Value: 0.0 s

<Trigger.Delay> : Double

Specifies the trigger delay time in seconds. The trigger delay time is the length of time the
digitizer waits after it receives the trigger. The event that occurs when the trigger delay
elapses is the Reference Event.
NI Default Value: 0.0 s

<Trigger mode> Enum
Normal 0
Auto 1
Auto level 2

Normal: If no trigger is received an error message is returned.
Auto: If no trigger is received an immediate trigger is set.
Auto level : If no trigger is received a volt max measurement is performed and the trigger
level is adjusted according to this. If no volt max level is found an immediate trigger is set.

<Trigger.Timeout> : Double
Defines how long the fetch function shall wait for a trigger before it
timeouts.

<Measurement> : <Channel><Selection>

<Measurement.Channel> Enum
Channel 1 0
Channel 2 1
*Channel 3 3
*Channel 4 4
*currently not in use

<Measurement.Selection> Enum
AC Estimate 1012
Area 1003
Average Frequency 1016
Average Period 1015
Cycle Area 1004
DC Estimate 1013
Fall Time 1
Falling Slew Rate 1011
FFT Amplitude 1009
FFT Frequency 1008
Frequency 2
Integral 1005
Negative Duty Cycle 13
Negative Width 11
None 4000
Overshoot 18
Period 3
Phase Delay 1018
Positive Duty Cycle 14
Positive Width 12
Preshoot 19
Rise Time 0
Rising Slew Rate 1010
Time Delay 1014
Voltage Amplitude 15
Voltage Average 10
Voltage Base 1006
Voltage Base to Top 1017
Voltage Cycle Average 17
Voltage Cycle RMS 16
Voltage High 8
Voltage Low 9
Voltage Max 6
Voltage Min 7
Voltage Peak to Peak 5
Voltage RMS 4
Voltage Top 1007

Appendix D: Oscilloscope response
When an oscilloscope request is sent with function set to fetch, the oscilloscope will return
(on success) a waveform for each channel enabled.
Values that has not been requested are returned as 0.000000
Notice: all channels are allways included in the response.

<Horizontal><Channel *2><Measure *3><Trigger>

<Horizontal.ActualSampleRate> : Double

Returns the effective sample rate of the acquired waveform the digitizer acquires for each
channel.

<Horizontal.ActualRecordLength> : Integer

The actual number of samples in the acquired waveform; this number may be less than
numSamples if the number you request is not available.

<Channel.ProbeAttenuation> : Double

Specifies the probe attenuation for the input channel.

<Channel.VerticalRange> : Double

Specifies the absolute value of the input range for a channel.

<Channel.VerticalOffset> : Double

The offset factor of the given channel; useful for scaling binary data with the following
formula
voltage = binary data * gain factor + offset

<Channel.Gain> : Double

The gain factor of the given channel; useful for scaling binary data with the following
formula
voltage = binary data * gain factor + offset

<Channel.Waveform> : Array of [ActualSamples] Bytes

If ActualSamples is 0 then there will be nothing here.

<Measure> : Double

<Trigger.Received> : Boolean

Return false if no trigger is received.

<Trigger.Level> : Double

Returns the trigger level used.

